• (Обучение бесплатно)
  • Приглашаем учащихся 5-11кл попробовать свои силы на занятиях объединения "Радиотехническое конструирование"
  •  (Обучение бесплатно)
  • Запись проводится с 9-00 до 17-00 по адресу г. Комсомольск-на-Амуре МОУ ДО ЦЮТ
  •    ул Краснофлотская, д 22, корп 2. Телефон: (4217) 54-79-88
  •    Начало занятий - сентябрь 2016 г.
  •    *Если не успели записаться.
  •    Приходите,ждем!!!*
                           










                                               


  • I






      
           

Научно-популярный образовательный ресурс для юных и начинающих радиолюбителей - Popular science educational resource for young and novice hams

Основы электричества, учебные материалы и опыт профессионалов - Basics of electricity, educational materials and professional experience

КОНКУРС
language
 
Поиск junradio

Радиодетали
Искать на DESSY.RU
Сервисы

Широкий выбор недорогих и качественных товаров
 
Выгодный обмен
электронных валют

Интересно
Немного подработать
Есть свободное время?
Можешь немного подработать.
Загрузка...
Друзья JR



JUNIOR RADIO


 

Метеостанция на базе Arduino



 



 

Неимоверная популярность домашних метеостанций, показывает, что не только фермеры интересуются погодой. Многие люди хотят иметь возможность отслеживать и записывать погодные события в их местности.

Погодные станции обычно состоят из двух основных частей: датчиков, которые расположены снаружи для измерения температуры, скорости (направления) ветра, влажность, осадки, и барометрического давления. И дисплей, который находится внутри в удобном месте. Как правило, внешние датчики соединины вместе с помощью кабелей с одним передатчиком.

 

Многие погодные станции передают свои данные на частотепримерно 433 МГц, используя полосу, отведенную для маломощного нелицензионного использования.

 

 

Метеостанция схема

 

Код Arduino

 

/**

* WeatherStationReceiver

*

* Receives and decodes a pulse-width and transition encoded RF

* bitstream, received through a 433MHz receiver module into the PB0

* Input Capture Pin (ICP).

*

* The transmitter is from the La Crosse WS-2355 Weather Station

* package, the RF transmitter is the integrated thermo/hygro station,

* (part number WS-2300-25S), and cable connections between the rain and

* wind sensors are made to the WS-2300-25S unit as it is the central RF

* transmitter. The cable connected rainfall sensor is part number

* WS-2300-16. The cable connected wind speed and direction sensor is

* part number TX20.

*

* Copyright 2009 Marc Alexander <marc.alexander@gmail.com>

* Copyright 2009 Jonathan Oxer <jon@oxer.com.au>

* http://www.practicalarduino.com/projects/weather-station-receiver

*/

/**

* NOTE:

* The rainfall count may be 11 bits, not 12 bits. Once I saw a 4000+

* reading on it that was not generated by rainfall pulses, so a higher

* bit there may mean something else? Still investigating.

*/

/**

* TODO:

* 1. Add: WSR_RESET() call from a dead-time timeout. If no RF

* activity is received within a few mS, reset the receiver state

* machine. Currently unsquelched RF noise is resetting it anyway

* given the receiver model used, but a quiet receiver timeout should be

* there also. Make sure boundary condition of reset just as new bit /

* period coming in is not a problem causing loss of packet start if

* reset happens during first transition/bit in.

*/

/*--------------------------------------------------------------------------------------

Includes

--------------------------------------------------------------------------------------*/

#include "WeatherStationReceiver.h"

/*--------------------------------------------------------------------------------------

Variables

--------------------------------------------------------------------------------------*/

//----------

// Timer 1 Input capture period and captured event time detection

uint uiICP_CapturedTime;

uint uiICP_PreviousCapturedTime;

uint uiICP_CapturedPeriod;

uint uiICP_PreviousCapturedPeriod;

byte bICP_CapturedPeriodWasHigh;

byte bICP_PreviousCapturedPeriodWasHigh;

unsigned long ulICP_Timestamp_262_144mS;

//----------

byte bICP_WSR_State; //Interpreter state machine

byte bICP_WSR_PacketData[WSR_PACKETARRAYSIZE][4+8]; //incoming RF packet data with 4 byte timestamp at start, already bit reversed to suit.

//main array size must be ^2, and there may be some other count dependencies in the interpreter.

byte bICP_WSR_PacketInputPointer; //

byte bICP_WSR_PacketOutputPointer; //

byte bICP_WSR_PacketInputBitPointer; //

uint uiICP_WSR_ReceivedPacketCount; //

//----------

// Saved timestamp at packet receive conversion

unsigned long ulWSR_LastTimestamp_262_144mS;

//----------

// Real world data, latest received and converted by Packet_Converter_WS2355()

byte bWSR_StationTransmitterID; //

sint siWSR_CurrentTemperature; //

byte bWSR_CurrentHumidity; //

byte bWSR_CurrentWindDirection; //

uint uiWSR_CurrentWindSpeed_m_per_sec; //

uint uiWSR_RainfallCount; //

unsigned long ulWSR_Rainfall_mm_x10;

//----------

const char strWindDirection[16][4] =

{

"N ", "NNE", "NE ", "ENE",

"E ", "ESE", "SE ", "SSE",

"S ", "SSW", "SW ", "WSW",

"W ", "WNW", "NW ", "NNW"

};

// Comment out for a normal build

// Uncomment for a debug build

//#define DEBUG

/**

* Initial configuration

*/

void setup(void)

{

Serial.begin( 38400 ); //using the serial port at 38400bps for debugging and logging

Serial.println( "Weather Station Receiver has powered up" );

Init_Ports();

Init_RF_Interpreters();

interrupts(); // Enable interrupts (NOTE: is this necessary? Should be enabled by default)

}

/**

* Main program loop

*/

void loop(void)

{

Packet_Converter_WS2355();

}

/**

* Initialise port initial state and data direction registers

*/

void Init_Ports()

{

DDRB = 0x2F; // B00101111

}

/*--------------------------------------------------------------------------------------

Packet_Converter_WS2355

Inspect, validate and convert any fresh incoming packet data to the latest real world values

bit 1 2 3 4 5 byte 1

<-TS 1234567890123456789012345678901234567890123456789012 00112233 4455667788990

/--||--\/--||--\/--||--\/--||--\/--||--\/--||--\/--|

1) 0000100101000010001001111000010100110011101011000001 00000043 0942278533AC1 st:34 ok: 23.3? (533 = 53.3deg, - 30.0deg offset)

ssiiiiiiii ttt

2) 0000100100010010001001111000010100001101101011111000 00000045 091227850DAF8 st:34 ok: 50% RH

ssiiiiiiii hh

3) 0000100100100010001001111000000010001100111101111000 00000046 092227808CF78 st:34 ok: 140 rainfall, 72.5 mm

ssiiiiiiii rrrrrrrrrrrr

4) 0000100101110010001001111000000000001100111111111101 00000047 097227800CFFD st:34 ok: W (12) wind, speed 0.0m/s 0.0km/h

ssiiiiiiii

5) 0000100101000010001001111000010100110011101011000001 00000049 0942278533AC1 st:34 ok: 23.3?

ssiiiiiiii

6) 0000100100010010001001111000010100001101101011111000 0000004A 091227850DAF8 st:34 ok: 50% RH

ssiiiiiiii

7) 0000100100100010001001111000000010001100111101111000 0000004B 092227808CF78 st:34 ok: 140 rainfall, 72.5 mm

ssiiiiiiii

8) 0000100101110010001001111000000000001100111111111101 0000004D 097227800CFFD st:34 ok: W (12) wind, speed 0.0m/s 0.0km/h

ssiiiiiiii wwww cccc

cccc = sum of all previous nibbles, from the start of the packet (all 48 preceding bits, 12 nibbles)

ss = sensor/packet identifier

wwww = wind direction

0 = N 1 = NNE 2 = NE 3 = ENE

4 = E 5 = ESE 6 = SE 7 = SSE

8 = S 9 = SSW 10 = SW 11 = WSW

12 = W 13 = WNW 14 = NW 15 = NNW

iiiiiiii = station ID byte. May not be using the top(left) bit of this byte, but is using bits 0-6 at least.

Every time the WS-2300-25S transmitter batteries are changed, it generates a new semi-random

station ID. The user is expected to power cycle the WS-2355 receiver which will then

'lock on' to the next received station ID.

rrrrrrrrrrrr = 12 (potential?) bits of rainfall count.

Note that it is up to the data analyser and any time window formatting

to treat this as a differential value only. It is expected that the value will

overflow in long term use.

For more data decoding and locations, see conversion code below

--------------------------------------------------------------------------------------*/

void Packet_Converter_WS2355(void)

{

byte b;

byte c;

sint si;

if( bICP_WSR_PacketInputPointer != bICP_WSR_PacketOutputPointer )

{

// A fresh packet is ready to check and convert

#ifdef DEBUG

if( (ulICP_Timestamp_262_144mS - ulWSR_LastTimestamp_262_144mS) > 8 )

{

// Blank separator line if there has been more than about 2 seconds since the last

// packet to make it easier to see what belongs with what

Serial.println();

}

#endif

#ifdef DEBUG

//print it in binary text out the serial port

Serial.print("BINARY=");

for( b = WSR_TIMESTAMP_BIT_OFFSET ; b < (WSR_RFPACKETBITSIZE+WSR_TIMESTAMP_BIT_OFFSET) ; b++ )

{

if( (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][b >> 3] & (0x80 >> (b&0x07))) != 0 )

{

Serial.print( '1', BYTE );

} else {

Serial.print( '0', BYTE );

}

if( b == 31 )

Serial.print( ' ', BYTE ); //timestamp seperator

}

Serial.println();

//print it in hex text out the serial port

//Serial.print( ' ', BYTE );

Serial.print("HEX=");

for( b = 0 ; b < ((WSR_RFPACKETBITSIZE+WSR_TIMESTAMP_BIT_OFFSET)/4) ; b += 2 )

{

// One nibble at a time

c = bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][b >> 1];

// Top nibble

Serial.print( (c & 0xF0) >> 4, HEX );

// Bottom nibble, drop the last one since it's not part of the 52 incoming bits

if( b < (((WSR_RFPACKETBITSIZE+WSR_TIMESTAMP_BIT_OFFSET)/4)-1) )

Serial.print( (c & 0x0F), HEX );

// Timestamp seperator

if( b == 6 )

Serial.print( ' ', BYTE );

}

Serial.println();

#endif

//----------------------------------------------------------------------------

if( PacketAndChecksum_OK_WS2355 )

{

// Extract the station ID

b = (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][5] << 4);

b += (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][6] >> 4);

bWSR_StationTransmitterID = b;

// Print to serial port

Serial.print( "STATIONID=" );

Serial.println( bWSR_StationTransmitterID, DEC );

// Bits 4 and 5 of this byte are the sensor/packet ID

b = bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][5];

b = (b >> 4) & 0x03;

switch( b )

{

case 0:

{

// 0: temperature

// Sensor/packet ID bits are 0x00, temperature is present in this packet

// Lower nibble of byte 7 is first temperature digit, take care of 3xx offset

si = ((bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][7] & 0x0F) * 100);

si += ((bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][8] >> 4) * 10);

si += (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][8] & 0x0F);

siWSR_CurrentTemperature = (si - 300);

// Print to serial port with decimal place management

Serial.print("TEMPERATURE=");

Serial.print( (siWSR_CurrentTemperature/10), DEC );

Serial.print( '.', BYTE );

if( siWSR_CurrentTemperature < 0 ) {

Serial.println( ((0-siWSR_CurrentTemperature)%10), DEC );

} else {

Serial.println( (siWSR_CurrentTemperature%10), DEC );

}

break;

}

case 1:

{

// 1: humidity

//sensor/packet ID bits are 0x01, humidity is present in this packet

c = ((bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][7] & 0x0F) * 10);

c += (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][8] >> 4);

bWSR_CurrentHumidity = c;

// Print to serial port with decimal place management

Serial.print("HUMIDITY=");

Serial.println( bWSR_CurrentHumidity, DEC );

break;

}

case 2:

{

// 2: rainfall

si = (sint)(bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][7] & 0x0F) << 8;

si += bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][8];

uiWSR_RainfallCount = (uint)si;

// Killer (for the Arduino) long multiply here, put in for now to demo real mm of rainfall maths

ulWSR_Rainfall_mm_x10 = (((unsigned long)uiWSR_RainfallCount * 518) / 100);

// Print to serial port

Serial.print("RAINFALL=");

Serial.print( (ulWSR_Rainfall_mm_x10/10), DEC );

Serial.print( '.', BYTE );

Serial.println( (ulWSR_Rainfall_mm_x10%10), DEC );

break;

}

case 3:

{

// 3: wind direction and speed

// Sensor/packet ID bits are 0x03, wind data is present in this packet

// Wind direction

bWSR_CurrentWindDirection = (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][8] & 0x0F);

//wind speed, decimal value is metres per second * 10 (1 fixed deciml place)

si = (sint)(bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][7] & 0x10) << 4;

si += ((bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][7] & 0x0F) << 4);

si += (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][8] >> 4);

uiWSR_CurrentWindSpeed_m_per_sec = (uint)si;

// Print to serial port with decimal place management

Serial.print("WINDDIRECTION=");

Serial.println( strWindDirection[bWSR_CurrentWindDirection] );

Serial.print("WINDSPEED=");

Serial.print( (uiWSR_CurrentWindSpeed_m_per_sec/10), DEC );

Serial.print( '.', BYTE );

Serial.println( (uiWSR_CurrentWindSpeed_m_per_sec%10), DEC );

break;

}

default:

{

break;

}

}

} else {

Serial.print( " bad checksum or packet header" );

}

//----------------------------------------------------------------------------

//save the last timestamp value, currently used for extra CR/LF in serial print

ulWSR_LastTimestamp_262_144mS = ulICP_Timestamp_262_144mS;

//----------------------------------------------------------------------------

//conversion process done on this packet, move the output pointer along

bICP_WSR_PacketOutputPointer = ((bICP_WSR_PacketOutputPointer+1)&(WSR_PACKETARRAYSIZE-1));

}

}

/**

* PacketAndChecksum_OK_WS2355

* Return true if packet checksum and inspection is ok

*/

byte PacketAndChecksum_OK_WS2355(void)

{

byte dataPos;

byte checksum;

// First check, last 4 bits of packet are sum of the previous 48 bits (12 nibbles)

// Don't forget to offset past the timestamp in the first 4 bytes

checksum = 0;

for( dataPos = 4; dataPos < 10; dataPos++ )

{

// Checked a byte at a time, accumulate into checksum

checksum += (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][dataPos] >> 4);

checksum += (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][dataPos] & 0x0F);

}

checksum &= 0x0F;

if( checksum != (bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][10] >> 4) )

{

return( false ); // Checksum does not match

}

// Second check, first byte of packet must be 0x09 ( B00001001 ), appears to be

// the main identifier for this station

if( bICP_WSR_PacketData[bICP_WSR_PacketOutputPointer][4] != 0x09 )

{

return( false );

}

return( true );

}

/**

* Init_RF_Interpreters

*/

void Init_RF_Interpreters(void)

{

//Call macros that reset any RF_Interpreter_... state machine and housekeeping values

WSR_RESET();

//RF decode ports setup

//Marc making PB0 (ICP1 Input Capture) a floating input for RX ASK bitstream receiving

//PB0 was used by the Color LCD/Joystick Shield for the backlight_on signal,

//R2 has now been removed on the lcd pcb, and Q1 C-E shorted to keep the BL always on

DDRB &= ~(1<<DDB0); //PBO(ICP1) input

PORTB &= ~(1<<PORTB0); //ensure pullup resistor is also disabled

//PORTD6 and PORTD7, GREEN and RED test LED setup

DDRD |= B11000000; //(1<<PORTD6); //DDRD |= (1<<PORTD7); (example of B prefix)

GREEN_TESTLED_OFF(); //GREEN test led off

RED_TESTLED_ON(); //RED test led on

//PORTD |= _BV(PORTD6); //GREEN test led off (example of _BV macro)

//PORTD &= ~_BV(PORTD7); //RED test led on (example of _BV macro)

//PORTD |= (1<<PORTD6); //GREEN test led off (example of AVR studio style)

//PORTD &= ~(1<<PORTD7); //RED test led on (example of AVR studio style)

//---------------------------------------------------------------------------------------------

//ICNC1: Input Capture Noise Canceler On, 4 successive equal ICP1 samples required for trigger (4*4uS = 16uS delayed)

//ICES1: Input Capture Edge Select 1 = rising edge to begin with, input capture will change as required

//CS12,CS11,CS10 TCNT1 Prescaler set to 0,1,1 see table and notes above

TCCR1A = B00000000; //Normal mode of operation, TOP = 0xFFFF, TOV1 Flag Set on MAX

//This is supposed to come out of reset as 0x00, but something changed it, I had to zero it again here to make the TOP truly 0xFFFF

TCCR1B = ( _BV(ICNC1) | _BV(CS11) | _BV(CS10) );

SET_INPUT_CAPTURE_RISING_EDGE();

//Timer1 Input Capture Interrupt Enable, Overflow Interrupt Enable

TIMSK1 = ( _BV(ICIE1) | _BV(TOIE1) );

}

/*--------------------------------------------------------------------------------------

TIMER1_OVF_vect

Timer1 overflow interrupt routine

262.144 mS TOF period

If used to feed a 32 bit timestamp counter, (0xFFFFFFFF = 4294967295 count before overlow)

= 1125899906 seconds = 18764998 minutes = 312749 = 13031 days = 35 years.

--------------------------------------------------------------------------------------*/

ISR( TIMER1_OVF_vect )

{

//increment the 32 bit timestamp counter (see overflow notes above)

//overflow is allowed as this timestamp is most likely to be used as a delta from the previous timestamp,

//so if it's used externally in the same 32 bit unsigned type it will come out ok.

ulICP_Timestamp_262_144mS++;

}

/*--------------------------------------------------------------------------------------

TIMER1_CAPT_vect

Timer1 input capture interrupt routine

--------------------------------------------------------------------------------------*/

ISR( TIMER1_CAPT_vect )

{

// Immediately grab the current capture time in case it triggers again and

// overwrites ICR1 with an unexpected new value

uiICP_CapturedTime = ICR1;

// GREEN test led on (flicker for debug)

GREEN_TESTLED_ON();

//----------------------------------------------------------------------------

//immediately grab the current capture polarity and reverse it to catch all the subsequent high and low periods coming in

//If the initial period filter passes below, this will be inspected to become bICP_EventPolarity

if( INPUT_CAPTURE_IS_RISING_EDGE() )

{

SET_INPUT_CAPTURE_FALLING_EDGE(); //previous period was low and just transitioned high

bICP_CapturedPeriodWasHigh = false; //uiICP_CapturedPeriod about to be stored will be a low period

} else {

SET_INPUT_CAPTURE_RISING_EDGE(); //previous period was high and transitioned low

bICP_CapturedPeriodWasHigh = true; //uiICP_CapturedPeriod about to be stored will be a high period

}

//----------------------------------------------------------------------------

//calculate the current period just measured, to accompany the polarity now stored

uiICP_CapturedPeriod = (uiICP_CapturedTime - uiICP_PreviousCapturedTime);

//----------------------------------------------------------------------------

// RF Pulse filtering, width test and polarity are analysed now, call the

// interpreter(s) to analyse them

RF_Interpreter_WS2355( /*uiICP_CapturedPeriod, bICP_CapturedPeriodWasHigh*/); //arguments removed and made global

//----------------------------------------------------------------------------

//save the current capture data as previous so it can be used for period calculation again next time around

uiICP_PreviousCapturedTime = uiICP_CapturedTime;

uiICP_PreviousCapturedPeriod = uiICP_CapturedPeriod;

bICP_PreviousCapturedPeriodWasHigh = bICP_CapturedPeriodWasHigh;

//GREEN test led off (flicker for debug)

GREEN_TESTLED_OFF();

}

/*--------------------------------------------------------------------------------------

RF_Interpreter_WS2355

The WS2355 sends 52 bits in a packet and the format is

A long high followed by a long low is 0

A short high followed by a long low is 1

Not much more is done in this input capture interrupt routine apart from the

00001 leader check and then loading of the full 52 bit packet.

bICP_WSR_PacketInputPointer will be moved along when received, the main loop

called Packet_Converter_WS2355() routine will do the rest of the work

to check and convert each packet's data content.

--------------------------------------------------------------------------------------*/

void RF_Interpreter_WS2355( /*uiICP_CapturedPeriod, bICP_CapturedPeriodWasHigh*/ )

{

volatile byte b;

byte bValidBit = false; // 0=false(WSR_BIT_NONE), 1=WSR_BIT_ZERO, 2=WSR_BIT_ONE

//#warning A quiet-time timeout must be added to this interepreter, to reset the state machine any time there is a long quiet break in rx

//discard the captured period if it is out of the expected range, it is noise...

if( (uiICP_CapturedPeriod >= WSR_PERIOD_FILTER_MIN) && (uiICP_CapturedPeriod <= WSR_PERIOD_FILTER_MAX) )

{

//----------------------------------------------------------------------------

//PERIOD INITIAL DURATION FILTER OK, CONTINUE

//----------------------------------------------------------------------------

//Check if this is a valid zero(long high) or one(short high) bit, or low period in between

if( bICP_CapturedPeriodWasHigh )

{

//got a high period, could be a valid bit

if( (uiICP_CapturedPeriod >= WSR_SHORT_PERIOD_MIN) && (uiICP_CapturedPeriod <= WSR_SHORT_PERIOD_MAX) )

{

//short high, valid one bit

bValidBit = WSR_BIT_ONE;

} else if( (uiICP_CapturedPeriod >= WSR_LONG_PERIOD_MIN) && (uiICP_CapturedPeriod <= WSR_LONG_PERIOD_MAX) ) {

//long high, valid zero bit

bValidBit = WSR_BIT_ZERO;

} else {

//invalid high period, in the dead zone between short and long bit period lengths

WSR_RESET();

}

}

//else

//{

// //got a low period, ignored

//}

//----------------------------------------------------------------------------

//Enter the state machine to load and prepare the incoming packet to bICP_WSR_PacketData[8][4+8]

if( bValidBit != false )

{

switch( bICP_WSR_State )

{

case WSR_STATE_IDLE:

{

if( bValidBit == WSR_BIT_ZERO )

{

//first bit of valid packet is zero (4 zero's, maybe 3)

//zero out the appropriate bit on the current input packet

bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][bICP_WSR_PacketInputBitPointer >> 3]

&= ~(0x01 << (bICP_WSR_PacketInputBitPointer&0x07));

bICP_WSR_PacketInputBitPointer++;

bICP_WSR_State = WSR_STATE_LOADING_BITSTREAM;

} else {

WSR_RESET();

}

break;

}

case WSR_STATE_LOADING_BITSTREAM:

{

// Potentially valid packet bitstream is on its way in, keep loading it up

if( bValidBit == WSR_BIT_ZERO )

{

bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][bICP_WSR_PacketInputBitPointer >> 3]

&= ~(0x80 >> (bICP_WSR_PacketInputBitPointer&0x07));

} else {

bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][bICP_WSR_PacketInputBitPointer >> 3]

|= (0x80 >> (bICP_WSR_PacketInputBitPointer&0x07));

}

// Check at appropriate location of the incoming bitstream, if it is valid and throw away if not

if( bICP_WSR_PacketInputBitPointer == (WSR_TIMESTAMP_BIT_OFFSET + 4) )

{

// 01234 01234

// Acceptable start to packet is 00001 or 00010 (lost the first 0), could optimise

// this but will leave with b for now for stability and debugging

b = bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][4/*bICP_WSR_PacketInputBitPointer >> 3*/];

b &= B11111000;

if( b == B00010000 )

{

//valid packet 00010 start (with lost first zero), realign and continue

bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][4/*bICP_WSR_PacketInputBitPointer >> 3*/] = B00001000;

bICP_WSR_PacketInputBitPointer++; //move up one past the inserted missing bit

} else if( b != B00001000 ) {

//invalid packet start, not 00001, reset

WSR_RESET();

}

}

// Final check, has the last packet bit (52 bits total) come in? If so, mark this packet

// as done and move the major packet input pointer along

if( bICP_WSR_PacketInputBitPointer == (WSR_TIMESTAMP_BIT_OFFSET + (WSR_RFPACKETBITSIZE-1)) )

{

// Got full packet, timestamp it for the main loop

bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][0] = byte(ulICP_Timestamp_262_144mS >> 24);

bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][1] = byte(ulICP_Timestamp_262_144mS >> 16);

bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][2] = byte(ulICP_Timestamp_262_144mS >> 8);

bICP_WSR_PacketData[bICP_WSR_PacketInputPointer][3] = byte(ulICP_Timestamp_262_144mS);

// Pointer and packet count

bICP_WSR_PacketInputPointer = ((bICP_WSR_PacketInputPointer+1)&(WSR_PACKETARRAYSIZE-1));//only the lower three bits are used for the 8 entry array

uiICP_WSR_ReceivedPacketCount++; //note will overflow and wrap, used for display of progress only

WSR_RESET();

}

// Increment pointer to next new bit location

bICP_WSR_PacketInputBitPointer++;

break;

}

}

}

//----------------------------------------------------------------------------

} else {

//----------------------------------------------------------------------------

// PERIOD OUT OF BOUNDS, DISCARD

// This will throw away any out of range periods and reset the state machine, high or low.

//----------------------------------------------------------------------------

WSR_RESET();

}

}

Готовое изделие

 

В начало обзора



Купить радиодетали для ремонта




Необходимо добавить материалы...
Результат опроса Результаты Все опросы нашего сайта Архив опросов
Всего голосовало: 254



          

Радио для всех© 2017