Integrated Automotive Signal Processing and Audio System Using the TMS320C3x

Uday Gupta, Micheal Bychowsky, and Dr. Sen M. Kuo
Department of Electrical Engineering
Northern Illinois University
Dekalb, IL 60115

This application report consists of one of the entries in a contest, The 1995 TI DSP Solutions Challenge. The report was designed, prepared, and tested by university students who are not employees of, or otherwise associated with, Texas Instruments. The user is solely responsible for verifying this application prior to implementation or use in products or systems.

Literature Number: SPRA095 March 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Contents

ABSTRACT	I
INTRODUCTION	2
HARDWARE DESCRIPTION	5
SOFTWARE DESCRIPTION	7
Hands-Free Cellular Phone Mode	7
Adaptive-Active Noise Control Mode	9
EXPERIMENTAL SETUP AND RESULTS	11
Hands-Free Cellular Phone Mode	11
Adaptive-Active Noise Control Mode	12
SUMMARY	23
REFERENCES	24
APPENDIX A—Flow Charts for System Software	25
APPENDIX B—INTSYS.ASM Program	29

List of Illustrations

Figure 1.	Integrated Automotive Signal Processing System	3
Figure 2.	Configuration of Microphones and Loudspeakers	
_	for the Integrated System	4
Figure 3.	Block Diagram of System Hardware	6
Figure 4.	Block Diagram of the System in HFCP Mode	8
Figure 5.	Block Diagram of the System in AANC Mode	10
Figure 6.	HFCP-Mode Performance (Only Acoustic Echo Present)	14
Figure 7.	HFCP-Mode Performance (Only Background Noise Present)	15
Figure 8.	HFCP-Mode Performance	
_	(Acoustic Echo and Background Noise Present)	16
Figure 9.	HFCP-Mode Performance (Double Talk)	17
Figure 10.	HFCP-Mode Performance (Only Acoustic Echo Present)	18
Figure 11.	HFCP-Mode Performance (Only Background Noise Present)	19
Figure 12.	HFCP-Mode Performance	
_	(Acoustic Echo and Background Noise Present)	20
Figure 13.	AANC-Mode Performance (Left Channel)	21
Figure 14.	AANC-Mode Performance (Right Channel)	22
Figure 15.	Flow Chart for System Initialization and Initial Modeling	
_	of MIS Filters (AANC Mode)	25
Figure 16.	Flow Chart for the System Software (HFCP Mode)	26
Figure 17.	Flow Chart for System Software in AANC Mode (Part 1 of 2)	27
Figure 18.	Flow Chart for System Software in AANC Mode (Part 2 of 2)	28

ABSTRACT

An integrated acoustic signal processing system, which provides adaptive noise cancellation, acoustic echo cancellation, and adaptive-active noise control for hands-free cellular phones, is developed based on the TMS320C3x. This system provides high-quality full-duplex voice communication and reduces the acoustic noise inside the automobile passenger compartment. The integration of this system with the existing car audio system reduces the overall system cost. The Musical Interference Suppression (MIS) process is developed to cancel the interference of music while updating the coefficients of adaptive filters. The MIS filters also model the electro-acoustic paths that are required by the active noise controller.

INTRODUCTION

Why use a hands-free cellular phone system? Dialogues such as the following should give a clear picture of the inconvenience resulting from the use of existing cellular phones: "Excuse me, honey, let me make a sharp turn", "Hold on, I need to make some turns". This inconvenience is caused by the use of a handset in the existing cellular phone system. Drivers often have to put down the handset to respond to two-hand jobs, such as making turns, and then return to their conversations. Interruptions in phone conversations are inconvenient and costly because cellular charges are expensive. Another important concern is safety. Imagine a car driver using a cellular phone with only one hand on the steering wheel. It would seem meaningless to have an anti-lock brake system and air bag since the driver does not have both hands available to operate the steering wheel. Therefore, the hands-free cellular phone system is becoming a must for drivers who use cellular phones.

The use of a hands-free cellular phone manifests itself in the problem of acoustic echo being transmitted to the far-end talker. In addition, noise causes two unpleasant situations: speech transmission mixed with a high level of background noise and the noisy environment inside the car. As cellular phones and compact disc (CD) stereos are brought into more cars, drivers deserve to enjoy these high-tech electronic products. However, with the engine running and wind blowing, the sound quality in both systems is often degraded by background noises. Therefore, reducing background noises inside the car is highly desired.

This project designs a TMS320C3x prototype for an integrated automotive signal processing and audio system. The integrated system was designed for drivers to drive safely by using a full-duplex hands-free cellular phone without the problems of acoustic echo and ambient noise in transmission, and to reduce the ambient noise inside the car. The integrated system operates in the following modes:

- Hands-free cellular phone (HFCP) mode: The system performs both acoustic echo cancellation (AEC) [1-3] to provide full-duplex communication capability and adaptive noise cancellation (ANC) [4] to reduce background noise. In this mode, the audio is turned "off" by the integrated system.
- Adaptive-active noise control (AANC) [5-6] mode: The system performs adaptive-active noise control to reduce ambient noise inside the car. In this default operation mode, the audio system may be turned "on".

When one mode is active, the other mode is disabled. Therefore, a single TMS320C3x digital signal processor (DSP) chip can provide the necessary computational requirements, thereby reducing system cost.

Figure 1 shows the block diagram of an integrated automotive signal processing and audio system integrated with a regular cellular phone (analog or digital) and audio system. The integration with the car audio system makes it possible to use the existing loudspeakers and power amplifiers for both the hands-free cellular phone and active noise control to further reduce the cost of the system. By integration of the existing car audio system, only two extra microphones are needed for the near-end speech pick-up in HFCP mode or residual noise pick-up in AANC mode.

Figure 1. Integrated Automotive Signal Processing System

Figure 2. Configuration of Microphones and Loudspeakers for the Integrated System

The integrated system in active noise control mode is designed to acoustically cancel background noise inside the car using the existing stereo system to produce the anti-noise (as shown in Figure 2). In the prototype, two microphones are placed on both sides of the driver's headrest to pick up residual noise. By utilizing the stereo loudspeakers as the canceling loudspeakers, AANC mode can provide a noise-free zone surrounding the driver's head. This arrangement does not affect the performance of the audio system. In HFCP mode, one of the two microphones is used as the primary microphone to pick up near-end speech, and one of the loudspeakers is used to broadcast the far-end speech. In this mode, the stereo system is turned "off" automatically by the integrated system.

In subsequent sections, a hardware and software description of the integrated system is presented along with the experimental setup and results.

HARDWARE DESCRIPTION

The integrated system is based on a single TMS320C3x DSP. Figure 3 shows the block diagram of the system hardware. Spectrum Signal Processing's TMS320C30 system board was used for software development and experiments. In production, the low cost TMS320C32 can be used. The system board has two channel input/output (I/O) capabilities. Both of the channels have 16-bit analog-to-digital converters (ADCs) and digital-toanalog converters (DACs). The integrated system requires six input and three output channels. The input channels are used for the revolutions-perminute (RPM) signal from the car (a reference microphone was used to obtain the reference noise signal in the prototype), the received signal from the cellular base, two microphones placed at both sides of the driver's headrest, the audio signal from the stereo system, and the mode switch to determine whether the system is in HFCP mode or AANC mode. The output channels are used for the two loudspeakers and transmit signal to the cellular base. To meet I/O requirements, a four-channel I/O board consisting of two daughter modules, with Burr Brown 16-bit ADCs/DACs on it, was connected to the system board through the DSPLINK on the system board. To synchronize the operation of the system and the I/O board, the clock on the system board was disabled and daughter module A on the four-channel I/O board was used to provide the necessary clock signals for the system board and daughter module B. Therefore, the hardware is configured as shown in Table 1.

Table 1. Hardware Configuration

BOARD	CONFIGURATION
System Board	Slave
Daughter Module A	Master
Daughter Module B	Slave

There is a three-cycle delay for I/O on the four-channel board. This delay was compensated for in the software by delaying the I/O signals on the system board.

Figure 3. Block Diagram of System Hardware

The system operates at a sampling rate of 8 kHz. The cut-off frequency for the anti-aliasing and the reconstruction filters was set at 3.3 kHz. This was achieved by changing the SIP resistors on both the system board and four-channel I/O board to appropriate values. External SRAM on the system

board is used for both program and data storage. Table 2 lists the memory map.

Table 2. Memory Map

ADDRESS	FUNCTION
0000 - 00CFh	Interrupt Vectors
00D0 - 01FFh	Program
2000 - FFFFh	Data

The I/O channels on the system board are mapped to the peripheral bus memory-mapped registers (808000h - 8097ffh), and I/O channels on the four-channel I/O board are mapped to the expansion bus (800000h - 801FFFh). A single external interrupt source (INT0) from the four-channel I/O is used.

SOFTWARE DESCRIPTION

The software developed for the integrated system includes the following functions:

- Mode detection
- Adaptive noise cancellation
- Acoustic echo cancellation
- Speech detection
- Adaptive-active noise control

The integrated system operates in two modes: HFCP mode or AANC mode. A select switch provides specific input for the software to decide in which mode the integrated system should work. A detailed flowchart of system software is given in Appendix A.

Hands-Free Cellular Phone Mode

In hands-free cellular phone mode, the system performs the following functions:

- Adaptive noise cancellation
- Speech detection
- Acoustic echo cancellation

Figure 4 shows the system block diagram in HFCP mode. In the figure, d(n) is the near-end speech picked up by the primary microphone, and z(n) is the

far-end speech signal from the cellular phone. The background noise picked up by the primary microphone was canceled through adaptive noise cancellation (ANC). The reference microphone is placed close to the noise source to sense the reference noise for ANC. The ANC is a 256-tap adaptive filter that uses the normalized least mean square (LMS) algorithm [7]. In addition to the background noise, the primary microphone also picks up the far-end speech output from the loudspeaker. This acoustic echo is canceled through acoustic echo cancellation (AEC). The AEC is a 200-tap adaptive filter that uses the normalized LMS algorithm. The AEC filter models the echo path between the loudspeaker and the microphone inside the car, canceling the echo caused by the acoustic coupling between the loudspeaker and the microphone.

Figure 4. Block Diagram of the System in HFCP Mode

The detection of receive (RX) and double-talk (DT) modes is very important for proper operation of AEC and to avoid the corruption of AEC filter coefficients. RX mode is detected by estimating the noise floor of the far-end speech signal $\mathbf{z}(n)$ and comparing it with the short-term power estimate to determine the presence of speech. DT mode detection is based on the echoreturn loss enhancement (ERLE) factor, which is defined as the ratio of energy in the signal $e_1(n)$ before echo cancellation and energy in the signal e(n) after echo cancellation. For the DT detector to work, it requires that the AEC filter provide some initial cancellation on system onset. Since the system is integrated with the car stereo system, the music signal can be used as a training signal to model the echo path for a duration of 10 seconds. Therefore, before actual conversation starts, the AEC filter has converged to the echo path. During the HFCP mode, the stereo system is turned off. The

AEC filter is updated during the RX mode only. During DT mode, the fixed filter from the previous RX mode is used to cancel the acoustic echo, and updating of the AEC filter is frozen to avoid corruption of the AEC filter coefficients.

Adaptive-Active Noise Control Mode

In AANC mode, the system performs the cancellation of undesired noise acoustically by generating anti-noise through the canceling loudspeakers. To create a three-dimensional noise-free zone, multiple adaptive filters are needed to generate the canceling noises. Two error microphones are located at both sides of the driver's headrest to pick up the residual noise for updating the AANC filter's coefficients. Since the error signals are measured by the error microphones, interference from the car audio system degrades the performance of AANC. In addition, to ensure the stability and convergence of the adaptive filters, it is necessary to compensate for the transfer functions of the error paths from the canceling loudspeakers to the error microphones by using the multiple-channel filtered-X LMS algorithm [8]. The integrated system has access to the car audio system—therefore, musical interference suppression (MIS) [9] filters were developed which converge to the corresponding error paths from the loudspeakers to the microphones to cancel the music interference to AANC. These MIS filters estimate the error paths on-line, which is very important in improving the performance of AANC.

Figure 5 shows the block diagram of the system in AANC mode, where $W_1(z)$ and $W_2(z)$ are the AANC filters, $C_{11}(z)$, $C_{12}(z)$, $C_{21}(z)$, and $C_{22}(z)$ are the MIS filters, $e_1(n)$ and $e_2(n)$ are the residual noises measured by the two microphones. As mentioned earlier, the music from the audio system becomes interference to the AANC system. The MIS system is used to cancel the music picked up by the microphones. The music-free residual noises $e_1'(n)$ and $e_2'(n)$ are used to update $W_1(z)$ and $W_2(z)$. The adaptive filters in the MIS system serve dual purposes—they not only provide musical interference suppression, but also model the error paths from the canceling loudspeakers to the microphones. These models are used in the filtered-X LMS algorithm to update the AANC filters.

Figure 5. Block Diagram of the System in AANC Mode

Multichannel on-line modeling of error paths is a difficult task because of the acoustical coupling between the individual channels. Therefore, only two error paths from one of the loudspeakers to the two microphones can be estimated at a time. The error paths are time-varying due to the temperature variations and movement of objects. Consequently, on-line modeling of these error paths is needed. On-line modeling has to be conducted without shutting "off" one channel so that the driver and other passengers in the car can enjoy the dual-channel stereo system. This was achieved by updating only two error paths from one loudspeaker to the two microphones while doing the musical interference suppression with the other two fixed filters. The updating of a pair of error paths was done alternately for a duration of 10 seconds each. For this approach to work, it is necessary that before the complete AANC system is turned "on", the MIS filters should have converged to a close approximation of the error paths. This was achieved by doing initial on-line modeling of error paths using music with only one channel "on" for 30 seconds for each channel. This way, when both the channels are turned "on" in full AANC mode, the MIS filters would be able to cancel some interference and, at the same time, keep tracking the time-varying error paths.

The acoustic noise inside the car is mostly periodic and lies in the frequency range below 1 kHz. Therefore, the 8 kHz sampling rate requires a higher order of filter to model the error paths. To overcome this problem, all the signals used for AANC were downsampled to 2 kHz in the software. The AANC mode is implemented with AANC filters of order 64 and MIS filters of order 40. The AANC filters are updated using the normalized filtered-X LMS algorithm, and the MIS filters are updated using the normalized LMS algorithm. The order of the AANC and MIS filters was optimized according to the computation power available for processing at a sampling rate of 8 kHz.

EXPERIMENTAL SETUP AND RESULTS

The experimental setup consists of a wood structure having the shape of a car cabin where the driver's seat is present. This wood structure is placed in an acoustic chamber to simulate the car in an open field. Two 10.0" loudspeakers (JBL 2123H) were used as audio loudspeakers for playing the music, for sending out the canceling noise during AANC mode, and for broadcasting the far-end speech during the HFCP mode. Two microphones (Shure SM98-A) are placed on both sides of headrest to pick up residual noise during the AANC mode and near-end speech during the HFCP mode. A Carvin FET 450 power amplifier was used as the audio-power amplifier. A Symmetric pre-amplifier was used to amplify the microphone-output signals. The placement of the loudspeakers, microphones, and the seat were similar to that in Figure 2. To simulate the noise source, another loudspeaker was placed in the acoustic chamber. Noise recorded inside a car was played on a tape deck and sent out through this noise source loudspeaker. The reference microphone was placed close to the noise source loudspeaker. To play the music and far-end speech, a Marantz double-cassette deck was used.

Hands-Free Cellular Phone Mode

In this mode, the right loudspeaker was used to broadcast far-end speech, and the left microphone was used to pick up near-end speech. For initial

modeling, music was played on the tape deck. During actual conversation, recorded speech was played on the tape deck to generate far-end speech. A person sitting on the seat was the near-end talker. During all this time, the noise loudspeaker was "on" to simulate practical driving conditions. Figure 6 shows the time-domain performance in HFCP mode when only acoustic echo was present. The plot on the top shows the acoustic echo picked up by the primary microphone and the bottom plot shows the residual echo. Figure 7 shows the performance when only background noise was present. Figure 8 shows the performance when both background noise and acoustic echo were The plot on the top is the signal picked up by the primary microphone. This signal contains both background noise and acoustic echo. The plot on the bottom shows the residual noise and residual echo. The performance of AEC in this situation, though still acceptable, is not as good as when only acoustic echo was present. This is because of the interference from the residual noise present in the input to the AEC. Figure 9 shows the performance during the double-talk period. The plot on the top has a portion of near-end speech contaminated with the acoustic echo. The plot on the bottom shows the echo-free near-end speech signal. The difference in the performance of HFCP in different situations is more evident from the frequency-domain results shown in Figures 10 - 12. Figure 10 shows a reduction of about 20 dB of acoustic echo. Figure 11 shows the reduction in the dominant periodic components of background noise by 20 - 25 dB. Figure 12 shows the performance of HFCP mode when both background noise and acoustic echo are present. As mentioned earlier, the performance of AEC is degraded when both background noise and acoustic echo are present. The filter orders of 256 and 200, respectively, for ANC and AEC are found to give the desired results. A higher-order filter gives better results, however, at the cost of longer convergence time.

Adaptive-Active Noise Control Mode

In this mode, music was played from the tape deck and sent out through both loudspeakers. The recorded noise was sent out through the noise source loudspeaker. Figure 13 shows the results obtained in AANC for the left channel. Figure 13a shows the noise and music picked up by the left microphone before cancellation. Figure 13b shows the noise-free music signal picked up by the left microphone after cancellation. The signal picked up after cancellation shows about a 20 - 25 dB reduction of the most dominant periodic component of the noise. Other noise components also show some reduction but, because they are almost at the same level as the music signal, it is difficult to see any reduction in them from the figures. By sitting on the seat, one could hear the reduced noise clearly after

cancellation. Similar results are plotted for the right microphone in Figure 14a and Figure 14b. The computation power available for processing limited the order of MIS and AANC filters to 40 and 64, respectively. Because of this limitation the AANC filter is not able to respond to higher order harmonics. Fortunately, the higher order harmonics have much lower power—therefore, system performance is still acceptable.

Figure 6. HFCP-Mode Performance (Only Acoustic Echo Present)

Figure 7. HFCP-Mode Performance (Only Background Noise Present)

Figure 8. HFCP-Mode Performance (Acoustic Echo and Background Noise Present)

Sec.

200m

0.0

Figure 9. HFCP-Mode Performance (Double Talk)

Figure 10. HFCP-Mode Performance (Only Acoustic Echo Present)

Figure 11. HFCP-Mode Performance (Only Background Noise Present)

Figure 12. HFCP-Mode Performance (Acoustic Echo and Background Noise Present)

Figure 13. AANC-Mode Performance (Left Channel)

Figure 14. AANC-Mode Performance (Right Channel)

SUMMARY

The integrated automotive signal processing and audio system is designed to allow people to use a hands-free cellular phone without the problem of acoustic echo and ambient noise being transmitted to the far-end talker. The system also reduces the ambient noise inside the car to enhance the music quality from the audio system. Since the design is integrated with the existing car stereo system (i.e., the car stereo system's loudspeakers and amplifiers are used for both hands-free cellular phone and active noise control), the system cost is reduced. Furthermore, the integration of the audio system allows musical interference to be eliminated by using the MIS filters. These MIS filters not only cancel the musical interference to AANC filters, but also model on-line the error paths from canceling loudspeakers to the residual noise pick-up microphones. The music signal from the audio system is used to perform initial modeling for the echo path.

REFERENCES

- 1. M. M. Sondhi and W. Kellermann, "Adaptive Echo Cancellation for Speech Signal", Chapter 11 in *Advances in Speech Signal Processing*, Edited by S. Furui and M. Sondhi, Dekker, New York, 1992.
- 2. S. M. Kuo and J. Chen, "Multiple-Microphone Acoustic Echo Cancellation with the Partial Adaptive Processes", *Digital Signal Processing*, Vol. 3, No.1, January 1993, pp. 54–63.
- 3. S. M. Kuo and Z. Pan, "Adaptive Acoustic Echo Cancellation Microphone", J. Acoust. Soc. Am., Vol. 93, No. 3, March 1993, pp. 1629–1636.
- 4. B. Widrow, et al, "Adaptive Noise Canceling: Principles and Applications", *Proc. of IEEE*, Vol. 63, No. 12, Dec. 1975, pp.1692–1716.
- 5. S. J. Elliott, I. M. Sothers, and P. A. Nelson, "A Multiple Error LMS Algorithm and its Application to the Active Noise Control of Sound and Vibration", *IEEE Trans. on ASAP*, Vol. ASSP-35, No. 10, Oct. 1987, pp. 1423–1434.
- 6. S. M. Kuo and D. R. Morgan, *Active Noise Control Systems*, Wiley, New York, 1996.
- 7. B. Widrow and S. D. Stearns, *Adaptive Signal Processing*, Prentice-Hall, Englewood Cliffs, NJ, 1985.
- 8. S. M. Kuo and B. M. Finn, "A General Multi-Channel Filtered LMS Algorithm for 3-D Active Noise Control Systems", Second Int. Con. on Recent Developments in Air and Structure Borne Sound and Vibration, Auburn AL, May 1992, pp. 345–352.
- 9. S. M. Kuo and B. M. Finn, "An Integrated Audio and Active Noise Control System", 1993 Int. Symp. Circuits and Systems, Chicago, IL, May 1993, pp. 2529–2532.

APPENDIX A—Flow Charts for System Software

Figure 15. Flow Chart for System Initialization and Initial Modeling of MIS Filters (AANC Mode)

Figure 16. Flow Chart for the System Software (HFCP Mode)

Figure 17. Flow Chart for System Software in AANC Mode (Part 1 of 2)

Figure 18. Flow Chart for System Software in AANC Mode (Part 2 of 2)

APPENDIX B—INTSYS.ASM Program

* Program: INTSYS.ASM	*
*	*
* Integrated acoustic echo cancellation for hand's-free cellular	*
* phone and active noise control system	*
*	*

$\ensuremath{^{\star}}$ The following code will implement the software on the TMS320C30	*
* Spectrum Development System along with a 4-channel I/O board	*
*	*
* The algorithm will detect which mode the Integrated system is	*
* HFCP mode: Do acoustic echo cancellation and adaptive noise	*
* cancellation	*
* AANC mode: Reduce noise inside the car	*
*	*

*	*
* The program will follow the following flow of operations	*
*	*
* 1) Definition of all constants and buffers	*
* 2) Initialization of TMS320C30 system board and the 4-channel	*
* I/O board	*
* 3) Clear all buffers	*
* 4) Do initial modeling of MIS filters for AANC mode	*
* 5) Check for the mode of the integrated system	*
* Mode=1 AANC mode	*
* Mode=0 HFCP mode	*
*	*

*	*
* Following are the subroutines used by the program	*
*	*

```
1) ISR - I/O for both the system and 4-channel board
    2) FIR - General FIR routine for parameters passed in at
            subroutine header
    3) LMS - General LMS routine for parameters passed in at
            subroutine header
    4) VSPOWER - Calculates a very short window average power
    5) SPOWER - Calculates a short window average power
    6) LPOWER - Calculates a very long window average power
    7) INVER - Calculates the inverse of a floating point no.
    8) \ensuremath{\mathsf{SPOWDT1}} - Calculates the short term energy in signal before echo
               cancellation
    9) SPOWDT2 - Calculates the short term energy in signal after echo
               cancellation
*******************
* The FIR filter coefficients for downsampling and upsampling are
* stored in the file LPKA21.ASC
*******************
                           ; Define listing file parameters
      .length 60
      .width 132
".init"
       .sect
RESET
       .word START
                            ;Setup RESET vector
INT0
            ISR
                            ;Setup IRQ0 (DSPLINK) interrupt vector
       .word
INT1
      .word
            START
                            ;Setup all other interrupts to dummy values
INT2
       .word
             START
INT3
       .word
             START
             START
XINT0
       .word
RINT0
       .word START
XINT1
       .word
            START
RINT1
            START
       .word
```

```
TINT0
      .word
            START
TINT1 .word
            START
DINT
      .word
            START
The program uses the external memory section on the Static RAM
      of the system board
*********************
       .data
PRIMCTL .word 00808064h
                           ; Primary bus control register address
EXPCTL .word 00808060h
                           ; Expansion bus control register address
PRIMWD .word 00000800h
                           ; control word defining primary bus status
EXPWD
      .word
            00000000h
                           ; control word defining expansion bus status
CACHE
      .word
             00001800h
                           ; clear and enable cache
*************
       Buffer locations for the AANC mode
ADDLP
      .word
            00002500h
                           ;address of LP anti-aliasing filter coefficients
ADDMRH .word
             00002600h
                           ; address of music signal for right channel at 8K
             00002700h
                           ;address of music signal for left channel at 8K
ADDMLH
      .word
ADDERRH .word
             00002800h
                           ;address of right MIC error signal at 8K
             00002900h
                           ;address of left MIC error signal at 8K
ADDERLH .word
ADDRH
       .word
             00002A00h
                           ;address of reference noise signal at 8K
ADDCR
             00002B00h
                           ;address of the right channel canceling signal at 2K
      .word
ADDCL
      .word
             00002C00h
                           ; address of the left channel canceling signal at 2K
             00003000h
                           ;address for buffer for generating cancelling signal
ADDY
      .word
             00003500h
                           ;address of the buffer for filtered XLMS
ADDYF
       .word
             00003800h
                           ;address of the filtered X signal (RR)
ADDM11 .word
```

;address of the filtered X signal (RL)

ADDM12

.word

00003A00h

```
00003D00h
ADDM21
      .word
                           ;address of the filtered X signal (LR)
ADDM22 .word
             00004000h
                           ;address of the filtered X signal (LL)
                           ;address of buffer for right channel input at 2k
ADDML
      .word
             00005600h
             00006000h
                           ; address of buffer for right channel input at 2k
ADDMR
      .word
ADDC11
             00007000h
                           ;address of secondary path filter(RR)
      .word
ADDC12
      .word
             00007300h
                           ;address of secondary path filter(RL)
ADDC21 .word
            00007600h
                           ;address of secondary path filter(LR)
ADDC22 .word
             00007900h
                           ;address of secondary path filter(LL)
ADDW1
      .word
             00008000h
                           ;address of AANC filter W1(z)
ADDW2
      .word
             00009000h
                           ;address of AANC filter W2(z)
******************
      Buffer locations for HFCP mode
ADDEFIL .word
            0000A000h
                           ;address of the echopath filter
ADDFENS .word
             0000B000h
                           ;address of reference far end speech vector
ADDW
      .word
            0000C000h
                          ;address of music signal for initial modeling
ADDR
             0000D000h
                           ;address of reference noise signal buffer
      .word
ADDENC .word
             0000E000h
                           ; address of adaptive noise cancellation filter
      Delay buffers for I/O on system board
********************
DELAY1 .word 0000E500h
DELAY2 .word
            0000E600h
DELAY3 .word
            0000E700h
DELAY .set
                           ;delay needed on system board I/O
*********************
      System board analog interface initialization
*******************
```

```
ADDCHA .word
            00804000h
                           ;address of channel A
ADDCHB .word
             00804001h
                            ;address of channel B
**********************
       4-channel I/O board analog interface initialization
********************
CHO_A
      .word
             00800000h
                           ;address of channel A0
RST_A
      .word
             00800001h
TIM_A
             00800001h
      .word
INTS_A .word
             00800003h
INTM_A .word
              00800003h
CH1_A
             00800004h
                            ;address of channel A1
       .word
ANAS_A .word
              00800005h
ANAC_A .word
              00800005h
BRDIS_A .word
              00800007h
RCTR_A .word
              00800007h
CH0_B
      .word
              00800008h
                            ;address of channel B0
              00800009h
RST_B
       .word
TIM_B
              00800009h
      .word
              0080000Bh
INTS_B .word
INTM_B .word
              0080000Bh
CH1_B
              0080000Ch
                            ;address of channel B1
       .word
ANAS_B .word
              0080000Dh
ANAC_B .word
              0080000Dh
BRDIS_B .word
              0080000Fh
RCTR_B .word
              0080000Fh
RRD_A
      .word
            0000e0000h
INTD_A .word
             000010000h
             000B20000h
ACRD_A .word
```

0FA020000h

TIMD_A .word

```
0A4000000h
UCRD_A
       .word
CRD_A
       .word
               08DFF0000h
              000c00000h
RRD_B
       .word
              000000000h
INTD_B
       .word
ACRD_B
       .word
              000320000h
UCRD_B
              0A0000000h
       .word
CRD_B
       .word
              08DFF0000h
TSTMASK .word
              000010000h
*****************
       Scaling factors and constants definition for AANC mode
*******************
S32767 .FLOAT 32767.0
                              ;scaling factor 32767
S32768 .FLOAT 3.0517578115E-5 ;scaling factor 1/32768
MIJ
       .float 0.001
                              ;step size
ORDERC
       .set
              40
                              ; order of the error path modelling filter
ORDERLP .set
                              ; order of LP anti-aliasing filter
                              ; order of the adaptive cancellation filter
ORDERW
       .set
              64
                              ; size of the buffer
BUFFER
              100
       .set
DOWNSP
       .set
               4
                              ;downsampling factor
COUNT1
       .float 30000.0
                              ; counter of initial modeling in AANC mode
              30000
                              ; counter for alternate updation of error path filters
COUNT2
       .set
NPOWI.
       .FLOAT 0
                              ; inverse of power of music signal for left channel
NPOWR
       .float 0
                              ; inverse of power of music signal for right channel
NORMU
       .float 0
                              ; inverse of power of reference noise signal
PREF
       .float 1.0
                              ; initial power estimate of reference noise signal
POWERL .float 1.0
                              ; initial power estimate of music signal for left
channel
POWERR
       .float 1.0
                              ;initial power estimate of music signal for right
channel
```

MODE

.float 0

SOPODT1 .FLOAT 0.0

******************** Scaling factors and constants definition for HFCP mode ****************** COUNTER .float 30000 ; counter for initial modeling of echo path HOCNT .set 8000 ; hangover counter for far end speech HC .set 4000 ; hangover counter for double talk SPTHR .float 0.001 ;threshold for far-end speech detection HIEST .float 10.0 ; highest inverse power ECHPOW .float 1.0 ;initial echo power ECHOFIL .set 200 ; order of echo path modeling filter ORDERWA .set 256 ; order of adaptive noise cancellation filter BUFFERA .set 600 ; buffer size MUN .FLOAT 0.001 ;Normalised step size BETA .FLOAT 0.05 ;factor for power estimate update MBETA .FLOAT 0.95 ;1-beta VSBETA .FLOAT 3.125000E-2 ;beta for very short window of 4ms VSOMBET .FLOAT 9.687500E-1 ;(1-beta) for very short window VSOPOWE .FLOAT 1.0 ;old power estimate for very short window SBETA .FLOAT 7.812500E-3 ;beta for short window of 16ms SOMBETA .FLOAT 9.920000E-1 ;(1-beta) for short window SOPOWER .FLOAT 0.0 ;old power for short window LBETA .FLOAT 6.250000E-5 ;beta for long window of 2 secs LOMBETA .FLOAT 9.999375E-1 ;(1-beta) for long window LOPOWER .FLOAT 0.0 ;old power estimate for long window

;initial power for the residual echo signal

```
SOPODT2 .FLOAT 0.0 ;initial power for signal before echo cancellation THRESDT .FLOAT 3.0 ;ERLE threshold for double talk detection
```

*	Initiali	ize the value at	the address to specified values *
******	*****	******	*********
REF	.word	0	reference noise signal at 2k
REFH	.word	0	reference noise signal at 8K
MUSICR	.float	0	right channel music input at 2K
MUSICRH	.float	0	right channel music input at 8K
MUSICL	.float	0	;left channel music input at 2K
MUSICLH	.float	0	;left channel music input at 8K
OUTR broadcas	.float st	0	<pre>;right channel music output at 8K/far end speech</pre>
OUTL	.float	0	;left channel music output at 8K
CANCR	.float	0	right channel canceling signal at 2K
CANCRH	.float	0	right channel canceling signal at 8K
CANCL	.float	0	;left channel canceling signal at 2K
CANCLH	.float	0	;left channel canceling signal at 8K
W11	.float	0	
W12	.float	0	
W21	.float	0	
W22	.float	0	
ERRL	.float	0	;left MIC input at 2K
ERRLH	.float	0	;left MIC input at 8K/speech pick up MIC
ERRR	.float	0	right MIC input at 2K
ERRRH	.float	0	right MIC input at 8K
FARENSP	.float	0	;far end speech from cellular phone
RESECHO	.float	0	transmit signal from cellular phone

```
ENCOUT .float 0
                           ;output of adaptive noise cancellation system
CERRR
       .float 0
                           ;internally computed difference signal for right
channel
CERRL
      .float 0
                           ; internally computed difference signal for left channel
RSP
            STACK
      .word
STACK
      .space 100
************************
      TMS320C30 Processor Initialization
      Program section at address 00D0
      .text
START:
      LDP
             PRIMCTL
                           ;Setup data page pointer
      LDI
             @RSP,SP
                           ;Setup the stack pointer
             @PRIMCTL,AR0
                           ;Setup the primary bus wait states
      LDI
                           ; in primary bus control register
      T.D.T
             @PRIMWD,R0
             R0,*AR0
      STI
      LDI
             @EXPCTL,AR0
                           ;Setup the expansion bus wait states
             @EXPWD,R0
      T.D.T
                           ; in expansion bus control register
      STI
             R0,*AR0
      LDI
             @CACHE,ST
                           ; clear and enable cache by setting cache
                           ; control bits in the CPU control register
*********************
      Configure and initialize 4-channel I/O board
***********************
                           ;Configure site A
      LDI
                           ;Dummy read to reset
             @RST_A,AR0
```

```
LDI
        *AR0,R0
LDI
       @RCTR_A,AR0
                       ;Setup the route register
LDI
       @RRD_A,R0
STI
       R0,*AR0
LDI
       @INTM_A,AR0
                       ;Setup the interrupt mask register
LDI
       @INTD_A,R0
STI
       R0,*AR0
       @ANAC_A,AR0
LDI
                       ;Setup the AMELIA ctrl register
LDI
       @ACRD_A,R0
STI
       R0,*AR0
LDI
       @TIM_A,AR0
                       ;Setup the timer
LDI
       @TIMD_A,R0
STI
       R0,*AR0
       @RCTR_A,AR0
                        ;Setup the user ctrl register
LDI
LDI
       @UCRD_A,R0
STI
       R0,*AR0
                        ;Configure site B
LDI
       @RST_B,AR0
                        ;Dummy read to reset
LDI
        *AR0,R0
       @RCTR_B,AR0
                        ;Setup the route register
LDI
       @RRD_B,R0
LDI
       R0,*AR0
STI
LDI
       @INTM_B,AR0
                       ;Setup the interrupt mask
       @INTD_B,R0
LDI
STI
       R0,*AR0
LDI
       @ANAC_B,AR0
                       ;Setup the AMELIA ctrl register
       @ACRD_B,R0
LDI
       R0,*AR0
STI
LDI
       @RCTR_B,AR0
                       ;Setup the user ctrl register
LDI
       @UCRD_B,R0
       R0,*AR0
STI
```

```
All the arrays being used are cleared i.e. they are initialized to 0*
*****************
       LDI
              BUFFER-1,RC
       LDI
              BUFFER, BK
       LDI
              @ADDY,AR0
       LDI
              @ADDYF,AR1
              @ADDMR,AR2
       LDI
              @ADDML,AR3
       LDI
       LDI
              @ADDM11,AR4
       LDI
              @ADDM12,AR5
       LDI
              @ADDM21,AR6
       LDI
              @ADDM22,AR7
       LDF
              0.0,R0
       RPTB
              CLR
       STF
              R0,*AR0++(1)%
              R0,*AR1++(1)%
       STF
              R0,*AR2++(1)%
       STF
              R0,*AR3++(1)%
       STF
              R0,*AR4++(1)%
       STF
              R0,*AR5++(1)%
       STF
       STF
              R0,*AR6++(1)%
CLR
              R0,*AR7++(1)%
       STF
       LDI
              BUFFER-1,RC
       LDI
              BUFFER, BK
       LDI
              @ADDC11,AR0
              @ADDC12,AR1
       LDI
              @ADDC21,AR2
       LDI
              @ADDC22,AR3
       LDI
       LDI
              @ADDW1,AR4
              @ADDW2,AR5
       LDI
              CLR1
       RPTB
```

R0,*AR0++(1)%

STF

```
STF
                R0,*AR1++(1)%
        STF
                R0,*AR2++(1)%
                R0,*AR3++(1)%
        STF
                R0,*AR4++(1)%
        STF
                R0,*AR5++(1)%
CLR1
        STF
        LDI
                BUFFER-1,RC
        LDI
                BUFFER, BK
                @ADDMRH,AR0
        LDI
        LDI
                @ADDMLH,AR1
        LDI
                @ADDERRH,AR2
        LDI
                @ADDERLH,AR3
        LDI
                @ADDRH,AR4
        LDI
                @ADDCR,AR5
        LDI
                @ADDCL,AR6
        LDF
                0.0,R0
                CLR2
        RPTB
                R0,*AR0++(1)%
        STF
                R0,*AR1++(1)%
        STF
                R0,*AR2++(1)%
        STF
                R0,*AR3++(1)%
        STF
        STF
                R0,*AR4++(1)%
        STF
                R0,*AR5++(1)%
CLR2
                R0,*AR6++(1)%
        STF
        LDI
                BUFFERA-1,RC
        LDI
                BUFFERA, BK
                @ADDEFIL,AR0
        LDI
                @ADDFENS,AR1
        LDI
                @ADDW,AR2
        LDI
        LDI
                @ADDR,AR3
                @ADDENC, AR4
        LDI
                0.0,R0
        LDF
        RPTB
                CLRA
```

	STF	R0,*AR0++(1)%	
	STF	R0,*AR2++(1)%	
	STF	R0,*AR3++(1)%	
	STF	R0,*AR4++(1)%	
CLRA	STF	R0,*AR1++(1)%	
	OR	lh,IE	;Enable the IRQ0
	OR	2000h,ST	
	LDI	@RCTR_A,AR0	;Setup the configuration register site ${\tt A}$
	LDI	@CRD_A,R0	
	STI	R0,*AR0	
	LDI	@RCTR_B,AR0	;Setup the configuration register site B
	LDI	@CRD_B,R0	
	STI	R0,*AR0	
	LDF	@COUNT1,R6	;load counter for initial modeling in R6
	LDI	DOWNSP,R5	;load downsample counter in R5
	LDF	0.0,R7	;load dummy output in R7

	LDI	ORDERLP, BK	circular buffer length set to the order of LPF
	LDI	ORDERLP-2,RC	;loop counter set
	LDI	@ADDLP,AR0	;load address of LPF coefficients in ARO
AR1	LDI	@ADDMRH,AR1	;load address of right channel music signal at 8K in
	LDF	@MUSICRH,R0	;load latest music sample in R0
speaker	STF	R0,@OUTR	;store latest music in OUTR to send out thru' right
	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest music sample
	STI	AR1,@ADDMRH	;address updated
	CALL	FIR	;subroutine to do FIR filtering
	MPYF	4.0,R0	; multiply result of FIR by scaling factor of 4
	STF	R0,@MUSICR	downsampled right channel input in MUSICR
*****	*****	******	*******
* DOWN	SAMPLE T	HE RIGHT MIC INPO	JT *
*****	*****	******	*******
	LDI	ORDERLP-2,RC	;loop counter set
	LDI	ORDERLP-2,RC	<pre>;loop counter set ;load address of right channel error at 8K in AR1</pre>
	LDI	@ADDERRH,AR1	;load address of right channel error at 8K in AR1
	LDI	@ADDERRH,AR1	;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0
	LDI LDI LDF	@ADDLP,AR0 @ERRRH,R0	;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0
	LDI LDI LDF STF	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)%	;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal
	LDI LDI LDF STF STI	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)% AR1,@ADDERRH	<pre>;load address of right channel error at 8K in ARl ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;ARl modified to point to oldest error (right) signal ;address updated</pre>
	LDI LDI LDF STF STI CALL	@ADDERRH, AR1 @ADDLP, AR0 @ERRRH, R0 R0, *AR1++(1)% AR1, @ADDERRH FIR	<pre>;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal ;address updated ;subroutine to do FIR filtering</pre>
	LDI LDI LDF STF STI CALL MPYF	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)% AR1,@ADDERRH FIR 4.0,R0	<pre>;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal ;address updated ;subroutine to do FIR filtering ;multiply result of FIR by scaling factor of 4</pre>
****	LDI LDI STF STI CALL MPYF STF	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)% AR1,@ADDERRH FIR 4.0,R0 R0,@ERRR	<pre>;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal ;address updated ;subroutine to do FIR filtering ;multiply result of FIR by scaling factor of 4</pre>
	LDI LDF STF STI CALL MPYF STF	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)% AR1,@ADDERRH FIR 4.0,R0 R0,@ERRR	;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal ;address updated ;subroutine to do FIR filtering ;multiply result of FIR by scaling factor of 4 ;downsampled right MIC input in ERRR
* DOWN	LDI LDF STF STI CALL MPYF STF *******	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)% AR1,@ADDERRH FIR 4.0,R0 R0,@ERRR *********************************	;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal ;address updated ;subroutine to do FIR filtering ;multiply result of FIR by scaling factor of 4 ;downsampled right MIC input in ERRR
* DOWN	LDI LDF STF STI CALL MPYF STF *******	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)% AR1,@ADDERRH FIR 4.0,R0 R0,@ERRR *********************************	<pre>;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal ;address updated ;subroutine to do FIR filtering ;multiply result of FIR by scaling factor of 4 ;downsampled right MIC input in ERRR **********************************</pre>
* DOWN	LDI LDF STF STI CALL MPYF STF *******	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)% AR1,@ADDERRH FIR 4.0,R0 R0,@ERRR *********************************	<pre>;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal ;address updated ;subroutine to do FIR filtering ;multiply result of FIR by scaling factor of 4 ;downsampled right MIC input in ERRR **********************************</pre>
* DOWN	LDI LDF STF STI CALL MPYF STF ********	@ADDERRH,AR1 @ADDLP,AR0 @ERRRH,R0 R0,*AR1++(1)% AR1,@ADDERRH FIR 4.0,R0 R0,@ERRR *********************************	<pre>;load address of right channel error at 8K in AR1 ;load address of LPF coefficients in AR0 ;load latest error (right) sample in R0 ;AR1 modified to point to oldest error (right) signal ;address updated ;subroutine to do FIR filtering ;multiply result of FIR by scaling factor of 4 ;downsampled right MIC input in ERRR *********************************</pre>

```
LDF
             @ERRLH,R0
                           ;load latest error (left) sample in RO
      STF
             R0,*AR1++(1)% ;AR1 modified to point to oldest error (left) signal
      STI
             AR1,@ADDERLH
                           ;address updated
      CALL
             FIR
                           ; subroutine to do FIR filtering
      MPYF
             4.0,R0
                           ;multiply result of FIR by scaling factor of 4
      STF
             R0,@ERRL
                            ;downsampled left MIC input in ERRL
* DOWN SAMPLE THE REFERENCE SIGNAL INPUT
*********************
      LDI
             ORDERLP-2,RC
                           ;loop counter set
      LDI
             @ADDRH,AR1
                           ; load address of reference signal at 8K in AR1
             @ADDLP,AR0
                           ; load address of LPF coefficients in ARO
      LDI
             @REFH,R0
                           ;load latest reference signal in R0
      LDF
             RO,*ARl++(1)% ;ARl modified to point to oldest reference signal
      STF
      STI
             AR1,@ADDRH
                           ;address updated
      CALL
             FIR
                           ; subroutine to do FIR filtering
      MPYF
             4.0,R0
                           ;multiply result of FIR by scaling factor of 4
      STF
             R0,@REF
                           ;downsampled reference signal in REF
* UPSAMPLE THE RIGHT CHANNEL CANCELLING SIGNAL
**********************
      T.D.T
             ORDERLP-2,RC
                           ;loop counter set
             @ADDCR,AR1
                           ; load address of right canceling signal at 2K in AR1
      LDI
      LDI
             @ADDLP,AR0
                           ;load address of LPF coefficients in ARO
             @CANCR,R0
                           ; load the latest right canceling signal in RO
      LDF
      STF
             R0,*AR1++(1)% ;AR1 modified to point to oldest right canceling signal
             AR1,@ADDCR
                           ;address updated
      STI
                           ; subroutine to do FIR filtering
      CALL
             FIR
             0.25,R0
                           ; multiply result of FIR by scaling factor of 1/4
      MPYF
      STF
             R0,@CANCRH
                           ;upsampled right canceling output in CANCRH
```

```
STF R7,@OUTL

STF R7,@CANCLH

SUBI 1,R5 ; check for downsampling count

BNZ TRAIN1
```

LDF

0.0,R7

ING LOOP AT LOWER SAMPLING RA

	LDI	ORDERC, BK	circular buffer length set to the order of MIS filters
	LDI	@ADDMR,AR1	<pre>;load address of right music signal(2K) buffer in AR1</pre>
	LDI	@ADDC11,AR0	;ARO points to error path (RR) estimate coefficients
	LDI	ORDERC-2,RC	;loop counter set
	LDF	@MUSICR,R0	; load the latest right music signal at 2K in $\ensuremath{\mathrm{R0}}$
2K	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest right music signal at
	STI	AR1,@ADDMR	;address updated
	CALL	FIR	subroutine to do FIR filtering

```
* CALCULATING THE ERROR FOR PATH R-R AND UPDATE C11(z)
```

```
;get downsampled right MIC error signal in R4
LDF
       @ERRR,R4
       R0,R4
                       ; calculate the difference
SUBF
STF
       R4,@CERRR
                       ;store the internally computed difference in CERRR
       @MU,R4
                        ;multiply the difference with normalized step size
MPYF
LDI
       ORDERC-2,RC
                       ;loop counter set
       @ADDMR,AR1
                        ; load address of right music signal(2K) buffer in AR1
LDI
       @ADDC11,AR0
                        ;ARO points to error path (RR) estimate coefficients
LDI
```

	CALL	LMS	; call subroutine to do least mean square update
	LDI	@ADDMR,AR1	;load address of right music signal(2K) buffer in AR1
	LDI	@ADDC12,AR0	;ARO points to error path (RL) estimate coefficients
	LDI	ORDERC-2,RC	;loop counter set
	CALL	FIR	; subroutine to do FIR filtering
	CALL	FIR	/Subloatine to do FIR IIItering
*****	*****	******	******
* CALCU	LATING T	HE ERROR FOR PATH	1 1-2 AND UPDATE C12(z) *
*****	*****	******	*******
	LDF	@ERRL,R4	;get downsampled left MIC error signal in R4
	SUBF	R0,R4	;calculate the difference
	STF	R4,@CERRL	store the internally computed difference in CERRL
	MPYF	@MU,R4	;multiply the difference with normalized step size
	LDI	ORDERC-2,RC	;loop counter set
	LDI	@ADDMR,AR1	;load address of right music signal(2K) buffer in AR1
	LDI	@ADDC12,AR0	;ARO points to error path (RL) estimate coefficients
	CALL	LMS	; call subroutine to do least mean square update
*****	*****	******	********
* FILTE	RED REFE	RENCE SIGNAL GENE	RATION *
*****	*****	******	********
	LDI	@ADDYF,AR1	;load address of reference signal buffer in AR1
	LDI	ORDERC-2,RC	;loop counter set
	LDF	@REF,R0	;load downsampled reference signal in RO
	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest REF
	STI	AR1,@ADDYF	;address update
	LDI	@ADDC11,AR0	;ARO points to error path (RR) estimate coefficients
	CALL	FIR	;subroutine to do FIR filtering
	LDF	R0,R3	;store filtered ref. signal (RR) in R3

LDI @ADDYF,AR1 ;load address of reference signal buffer in AR1

```
LDI
            ORDERC-2,RC
                        ;loop counter set
      LDI
            @ADDC12,AR0 ;AR0 points to error path (RL) estimate coefficients
      CALL
            FIR
                         ; subroutine to do FIR filtering
 ************************
* UPDATE REFERENCE SIGNAL BUFFER FOR x'11(n) and x'12(n)
********************
      LDI
            @ADDM11,AR1
                        ; load address of filtered-X signal (RR) buffer in AR1
      LDI
            ORDERW, BK
                        ;circular buffer length set to order of AANC filters
      STF
            R3,*AR1++(1)% ;save filtered-X signal (RR) value
      STI
            AR1,@ADDM11
                         ;address update
            @ADDM12,AR2
                        ; load address of filtered-X signal (RL) buffer in AR1
      T.D.T
      STF
           R0,*AR2++(1)% ;save filtered-X signal (RL) value
            AR2,@ADDM12
      STI
                        ;address update
* UPDATE W1(z)
*******************
            @CERRR,R0
                        ;get error signal CERRR in R0
      LDF
      MPYF @MU,R0
                        ;multiply R0 with normalized step size
                        ; load address of W1 filter coefficients in ARO
      LDI
            @ADDW1,AR0
      LDI
            ORDERW-1,RC
                        ;set repeat counter
      RPTB
          LMS_W1
                         repeat block up to LMS_W1
      MPYF3 *AR1++(1)%,R0,R3; calculate the update factor
      LDF
            *AR0,R4
                        ;get the old coefficient value in R4
      SUBF
            R3,R4
                        ; calculate new coefficient value
            R4,*AR0++(1) ;update the filter W1
LMS_W1 STF
******************
* GENERATE RIGHT CHANNEL CANCELLING SIGNAL
********************
```

LDI ORDERW-2,RC ;set repeat counter

Integrated Automotive Signal Processing and Audio System

LDI	@ADDY,AR1	;load address of reference signal buffer in AR1
LDI	@ADDW1,AR0	;load address of W1 filter coefficients in ARO
LDF	@REF,R0	;load downsampled reference signal in R0
STF	R0,*AR1++(1)%	;AR1 modified to point to oldest REF
STI	AR1,@ADDY	address update
CALL	FIR	;subroutine to do FIR filtering
STF	R0,@CANCR	store right canceling signal at 2K in CANCR
LDI	DOWNSP,R5	reload the downsample count in R5
SUBF	0.25,R6	check for training counter
BNZ	TRAIN1	

*****	*****	* * *	**	**:	* *	* *	* *	* *	* *	* *	* *	*	* *	* 1	**	* *	* *	*	* *	* *	**	* *	* *	* *	* 1	*	* *	*	* *	*	* *	*	* *	*:	* *		
*****	****	***	**	**:	* *	* *	* *	* *	* *	* *	* *	*	* *	* 1	* * *	*	* *	*	* *	* *	*	* *	* *	* *	* 1	*	* *	*	* *	*	* *	*	* *	*:	* *		
*****	*****	***	**	**:	* *	* *	**	* *	* *	٠*	* *	*	**	* *	**	٠*	* *	*	**	* *	**	* *	* *	٠*	* *	*	* *	*	* *	*	* *	*	* *	*:	* *		
******	*****	***	**	**	* *	* *	**	**	. * *	٠.	* 4	- *	**	* 1		٠.	* *	. * -	**	**	*	* *	* *	٠.	* 1	. *	* *		* *		* *	*	* *	* -	* *		
	LDF		@C	OUI	NT.	1,:	R6				;	1	oa	d	tŀ	ne	t	ra	ai:	ni	.ng	3	CC	ou	nt	e	r	i	n	R	5						
	LDI		DO	WNS	SP	, R	5				;	1	oa	d	tŀ	ne	d	ol	vn	sa	ımr	21	е	С	οι	ın	t	i	n	R!	5						
*****	*****	* * *	**	**:	* *	* *	**	* *	* *	* *	* *	*	* *	* *	**	٠*	* *	* * :	* *	* *	**	* *	* *	٠*	* *	* *	* *	*	* *	*	* *	*	* *	*:	* *		
*	Initia	al	mo	de:	liı	ng	f	or	.]	Le	ft		ch	ar	ne	-1																					*
*****	*****	***	**	**:	* *	* *	**	* *	* *	٠*	* *	*	**	* *	**	٠*	* *	*	* *	* *	**	* *	* *	٠*	* *	*	* *	*	* *	*	* *	*	* *	*:	* *		
TRAIN2	IDLE																																				
*****	*****	* * *	**	**:	* *	* *	* *	* *	**	* *	* *	*	* *	* *	**	**	* *	*:	* *	* *	**	* *	* *	٠*	* *	*	* *	*	* *	*	* *	*	* *	*:	* *		
* DOWN	SAMPLE	TH	E	LEI	FT	C:	ΗA	NN	ΙΕΙ		IN	IP	UT																							,	*

```
;circular buffer length set to the order of LPF
       LDI
              ORDERLP-2,RC
                             ;loop counter set
       LDI
              @ADDLP,AR0
                             ;load address of LPF coefficients in ARO
              @ADDMLH,AR1
                             ; load address of left channel music signal at 8K in AR1
       LDI
              @MUSICLH,R0
                             ;load latest music sample in RO
       LDF
       STF
              R0,@OUTL
                             ;store latest music in OUTL to send out thru' left
speaker
       STF
              R0,*AR1++(1)%
                             ;AR1 modified to point to oldest music sample
       STI
              AR1,@ADDMLH
                             ;address updated
       CALL
              FIR
                             ; subroutine to do FIR filtering
       MPYF
              4.0,R0
                             ;multiply result of FIR by scaling factor of 4
       STF
              R0,@MUSICL
                              ;downsampled left channel input in MUSICR
* DOWN SAMPLE THE RIGHT MIC INPUT
************************
       LDI
              ORDERLP-2,RC
                             ;loop counter set
       LDI
              @ADDERRH,AR1
                             ; load address of right channel error at 8K in AR1
              @ADDLP,AR0
                             ;load address of LPF coefficients in ARO
       LDI
              @ERRRH,R0
                             ;load latest error (right) sample in RO
       LDF
       STF
              R0,*AR1++(1)%
                            ;AR1 modified to point to oldest error (right) signal
       STI
              AR1,@ADDERRH
                             ;address updated
       CALL
              FIR
                             ; subroutine to do FIR filtering
                             ;multiply result of FIR by scaling factor of 4
       MPYF
              4.0,R0
       STF
              R0,@ERRR
                              ;downsampled right MIC input in ERRR
* DOWN SAMPLE THE LEFT MIC INPUT
******************
       LDI
              ORDERLP-2,RC
                             ;loop counter set
       LDI
              @ADDERLH,AR1
                             ; load address of left channel error at 8K in AR1
       LDI
              @ADDLP,AR0
                             ; load address of LPF coefficients in ARO
              @ERRLH,R0
                             ;load latest error (left) sample in RO
       LDF
```

LDI

ORDERLP, BK

```
STF
             R0,*AR1++(1)%
                           ;AR1 modified to point to oldest error (left) signal
       STI
             AR1,@ADDERLH
                           ;address updated
       CALL
             FIR
                           ; subroutine to do FIR filtering
             4.0,R0
                           ;multiply result of FIR by scaling factor of 4
       MPYF
             R0,@ERRL
                            ;downsampled left MIC input in ERRL
       STF
**********************
* DOWN SAMPLE THE REFERENCE SIGNAL INPUT
*******************
      LDI
             ORDERLP-2,RC
                           ;loop counter set
      LDI
             @ADDRH,AR1
                           ; load address of reference signal at 8K in AR1
       LDI
             @ADDLP,AR0
                           ; load address of LPF coefficients in ARO
             @REFH,R0
                           ;load latest reference signal in R0
       LDF
             RO, *AR1++(1)% ; AR1 modified to point to oldest reference signal
       STF
             AR1,@ADDRH
       STI
                           ;address updated
       CALL
             FIR
                            ; subroutine to do FIR filtering
      MPYF
             4.0,R0
                            ; multiply result of FIR by scaling factor of 4
             R0,@REF
                            ;downsampled reference signal in REF
       STF
* UPSAMPLE THE LEFT CHANNEL CANCELLING SIGNAL
******************
             ORDERLP-2,RC ;loop counter set
      LDI
      T.D.T
             @ADDCL,AR1
                           ; load address of left canceling signal at 2K in AR1
             @ADDLP,AR0
                           ;load address of LPF coefficients in ARO
      LDI
       LDF
             @CANCL,R0
                           ; load the latest left canceling signal in RO
             RO, *AR1++(1)% ;AR1 modified to point to oldest left canceling signal
       STF
       STI
             AR1,@ADDCL
                           ;address updated
                           ; subroutine to do FIR filtering
      CALL
             0.25,R0
                            ; multiply result of FIR by scaling factor of 1/4
      MPYF
             R0,@CANCLH
                            ;upsampled right canceling output in CANCLH
       STF
       LDF
             0.0,R7
```

```
R7,@OUTR
      STF
      STF
            R7,@CANCRH
      SUBI
            1,R5
                         ; check for downsampling count
      BNZ
            TRAIN2
********************
* PROCESSING LOOP AT LOWER SAMPLING RATE
*******************
      LDI
            ORDERC, BK
                         ;circular buffer length set to the order of MIS filters
      LDI
            @ADDML,AR1
                         ; load address of left music signal(2K) buffer in AR1
      LDI
            @ADDC22,AR0
                         ;ARO points to error path (LL) estimate coefficients
      LDI
            ORDERC-2,RC
                         ;loop counter set
      LDF
            @MUSICL,R0
                         ; load the latest left music signal at 2K in RO
            R0,*AR1++(1)%
                         ;AR1 modified to point to oldest left music signal at
      STF
2K
      STI
            AR1,@ADDML
                         ;address updated
      CALL
                         ; subroutine to do FIR filtering
******************
* CALCULATING THE ERROR FOR PATH L-L \;\; AND UPDATE C22(z)
********************
      LDF
            @ERRL,R4
                         ;get downsampled left MIC error signal in R4
      SUBF
            R0,R4
                         ;calculate the difference
```

STF	R4,@CERRL	store the internally computed difference in CERRL
MPYF	@MU,R4	;multiply the difference with normalized step size
LDI	ORDERC-2,RC	;loop counter set
LDI	@ADDML,AR1	;load address of left music signal(2K) buffer in AR1
LDI	@ADDC22,AR0	;ARO points to error path (LL) estimate coefficients
CALL	LMS	;call subroutine to do least mean square update

```
LDI @ADDML,AR1 ;load address of left music signal(2K) buffer in AR1
LDI @ADDC21,AR0 ;AR0 points to error path (LR) estimate coefficients
LDI ORDERC-2,RC ;loop counter set
CALL FIR ;subroutine to do FIR filtering
```

* CALCULATING THE ERROR FOR PATH L-R AND UPDATE C12(z)

LDF	@ERRR,R4	;get downsampled right MIC error signal in R4
SUBF	R0,R4	;calculate the difference
STF	R4,@CERRR	;store the internally computed difference in CERRR
MPYF	@MU,R4	;multiply the difference with normalized step size
LDI	ORDERC-2,RC	;loop counter set
LDI	@ADDML,AR1	;load address of left music signal(2K) buffer in AR1
LDI	@ADDC21,AR0	;ARO points to error path (LR) estimate coefficients
CALL	LMS	;call subroutine to do least mean square update

* FILTERED REFERENCE SIGNAL GENERATION

LDI	@ADDYF,AR1	;load address of reference signal buffer in AR1
LDI	ORDERC-2,RC	;loop counter set
LDF	@REF,R0	;load downsampled reference signal in R0
STF	R0,*AR1++(1)%	;AR1 modified to point to oldest REF
STI	AR1,@ADDYF	;address update
LDI	@ADDC22,AR0	;ARO points to error path (LL) estimate coefficients
CALL	FIR	;subroutine to do FIR filtering
LDF	R0,R3	store filtered ref. signal (LL) in R3

```
LDI
             @ADDYF,AR1
                           ; load address of reference signal buffer in AR1
      LDI
             ORDERC-2,RC
                           ;loop counter set
                           ;ARO points to error path (LR) estimate coefficients
             @ADDC21,AR0
      LDI
      CALL
                           ; subroutine to do FIR filtering
**********************
* UPDATE REFERENCE SIGNAL BUFFER FOR x'21(n) and x'22(n)
***********************
      LDI
             @ADDM22,AR1
                           ; load address of filtered-X signal (LL) buffer in AR1
      LDI
             ORDERW, BK
                           ; circular buffer length set to order of AANC filters
      STF
             R3,*AR1++(1)%
                          ;save filtered-X signal (LL) value
             AR1,@ADDM22
                           ;address update
      STT
                          ; load address of filtered-X signal (LR) buffer in AR1
      LDI
             @ADDM21,AR2
      STF
             R0,*AR2++(1)%
                          ;save filtered-X signal (LR) value
      STI
             AR2,@ADDM21
                           ;address update
* UPDATE W2(z)
*******************
      LDF
             @CERRL,R0
                          ;get error signal CERRL in RO
      MPYF
             @MU,R0
                          ;multiply R0 with normalized step size
                          ; load address of W2 filter coefficients in ARO
             @ADDW2,AR0
      LDI
      T.D.T
             ORDERW-1,RC
                          ;set repeat counter
      RPTB
             LMS_W2
                           repeat block up to LMS_W2
            *AR1++(1)%,R0,R3;calculate the update factor
      MPYF3
                           ;get the old coefficient value in R4
      LDF
             *AR0,R4
      SUBF
             R3,R4
                          ; calculate new coefficient value
LMS_W2 STF
             R4,*AR0++(1)
                          ;update the filter W2
*******************
```

Integrated Automotive Signal Processing and Audio System

* GENERATE LEFT CHANNEL CANCELLING SIGNAL

```
LDI
              ORDERW-2,RC
                            ;set repeat counter
       LDI
              @ADDY,AR1
                            ; load address of reference signal buffer in AR1
              @ADDW2,AR0
                            ;load address of W2 filter coefficients in ARO
       LDI
              @REF,R0
                            ;load downsampled reference signal in R0
       LDF
       STF
              R0,*AR1++(1)%
                            ;AR1 modified to point to oldest REF
              AR1,@ADDY
                            ;address update
       STI
                            ; subroutine to do FIR filtering
       CALL
              FIR
       STF
              R0,@CANCL
                            ;store right canceling signal at 2K in CANCL
       LDI
              DOWNSP, R5
                            ; reload the downsample count in R5
       SUBF
              0.25,R6
                            ; check for training counter
       BNZ
              TRAIN2
************
* AFTER INITIAL MODELLING WITH ONE CHANNEL OFF ....AT THIS TIME BOTH
* THE CHANNELS ARE TURNED ON
* Signals to be downsampled 1. Right channel input
                            2. Left channel input
                            3. Right MIC input
                            4. Left MIC input
                            5. Reference signal
* Signals to be upsampled
                            1. Right channel Cancelling signal
                            2. Left channel Cancelling signal
*****************
AANC
      LDI
             COUNT2,R6
                            ; load counter in R6 and R7 for alternate
       LDI
             COUNT2,R7
                            ;modeling of error paths
             DOWNSP,R5
                            ; load the downsample count in R5
       LDI
              0.0,R0
       LDF
              R0,@OUTR
       STF
              RO,@RESECHO ;setting outputs in HFCP mode to zero
       STF
```

ANC	IDLE							
*****	**************							
* DOWN SAMPLE THE RIGHT CHANNEL INPUT *								

	LDI	ORDERLP, BK	;circular buffer length set to the order of LPF					
	LDI	ORDERLP-2,RC	;loop counter set					
	LDI	@ADDLP,AR0	;load address of LPF coefficients in ARO					
AR1	LDI	@ADDMRH,AR1	;load address of right channel music signal at 8K in					
	LDF	@MUSICRH,R0	;load latest music sample in R0					
speaker	STF	R0,@OUTR	;store latest music in OUTR to send out thru' right					
	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest music sample					
	STI	AR1,@ADDMRH	;address updated					
	CALL	FIR	;subroutine to do FIR filtering					
	MPYF	4.0,R0	; multiply result of FIR by scaling factor of 4					
	STF	R0,@MUSICR	;downsampled right channel input in MUSICR					
*****	*****	******	*********					
* DOWN	SAMPLE I	THE LEFT CHANNEL	INPUT *					
*****	*****	* * * * * * * * * * * * * * * * * * * *	********					
	LDI	ORDERLP-2,RC	;loop counter set					
	LDI	@ADDLP,AR0	;load address of LPF coefficients in ARO					
	LDI	@ADDMLH,AR1	;load address of left channel music signal at 8K in AR1					
	LDF	@MUSICLH,R0	;load latest music sample in R0					
speaker	STF	R0,@OUTL	;store latest music in OUTL to send out thru' left					
	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest music sample					
	STI	AR1,@ADDMLH	;address updated					
	CALL	FIR	;subroutine to do FIR filtering					
	MPYF	4.0,R0	; multiply result of FIR by scaling factor of 4					
	STF	R0,@MUSICL	<pre>;downsampled left channel input in MUSICR</pre>					

* DOWN SAMPLE THE RIGHT MIC INPUT *			
*****	*****	*****	*******
	LDI	ORDERLP-2,RC	;loop counter set
	LDI	@ADDERRH,AR1	; load address of right channel error at 8K in AR1
	LDI	@ADDLP,AR0	; load address of LPF coefficients in ARO
	LDF	@ERRRH,R0	; load latest error (right) sample in R0
	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest error (right) signal
	STI	AR1,@ADDERRH	;address updated
	CALL	FIR	; subroutine to do FIR filtering
	MPYF	4.0,R0	;multiply result of FIR by scaling factor of 4
	STF	R0,@ERRR	;downsampled right MIC input in ERRR
*****	*****	******	*******
* DOWN SAMPLE THE LEFT MIC INPUT *			

	LDI	ORDERLP-2,RC	;loop counter set
	LDI	@ADDERLH,AR1	;load address of left channel error at 8K in AR1
	LDI	@ADDLP,AR0	;load address of LPF coefficients in ARO
	LDF	@ERRLH,R0	;load latest error (left) sample in R0
	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest error (left) signal
	STI	AR1,@ADDERLH	address updated
	CALL	FIR	;subroutine to do FIR filtering
	MPYF	4.0,R0	; multiply result of FIR by scaling factor of 4
	STF	R0,@ERRL	downsampled left MIC input in ERRL

* DOWN SAMPLE THE REFERENCE SIGNAL INPUT *			

```
LDI
       ORDERLP-2,RC
                       ;loop counter set
LDI
       @ADDRH,AR1
                       ; load address of reference signal at 8K in AR1
LDI
       @ADDLP,AR0
                       ;load address of LPF coefficients in ARO
       @REFH,R0
                       ;load latest reference signal in R0
LDF
STF
       R0,*AR1++(1)%
                       ;AR1 modified to point to oldest reference signal
STI
       AR1,@ADDRH
                        ;address updated
CALL
       FIR
                        ; subroutine to do FIR filtering
                        ;multiply result of FIR by scaling factor of 4
MPYF
       4.0,R0
                        ;downsampled reference signal in REF
STF
       R0,@REF
```

* UPSAMPLE THE RIGHT CHANNEL CANCELLING SIGNAL *

LDI	ORDERLP-2,RC	;loop counter set
LDI	@ADDCR,AR1	;load address of right canceling signal at 2K in AR1
LDI	@ADDLP,AR0	;load address of LPF coefficients in ARO
LDF	@CANCR,R0	; load the latest right canceling signal in R0
STF	R0,*AR1++(1)%	;AR1 modified to point to oldest right canceling signal
STI	AR1,@ADDCR	;address updated
CALL	FIR	;subroutine to do FIR filtering
MPYF	0.25,R0	; multiply result of FIR by scaling factor of $1/4$
STF	R0,@CANCRH	;upsampled right canceling output in CANCRH

* UPSAMPLE THE LEFT CHANNEL CANCELLING SIGNAL

LDI ORDERLP-2,RC ;loop counter set

LDI @ADDCL,AR1 ;load address of left canceling signal at 2K in AR1

LDI @ADDLP,AR0 ;load address of LPF coefficients in AR0

LDF @CANCL,RO ;load the latest left canceling signal in R0

```
{\tt R0,*AR1++(1)}% ;AR1 modified to point to oldest left canceling signal
STI
       AR1,@ADDCL ;address updated
                      ; subroutine to do FIR filtering
CALL
       FIR
       0.25,R0
MPYF
                      ;multiply result of FIR by scaling factor of 1/4
STF
       R0,@CANCLH
                      ;upsampled right canceling output in CANCLH
                      ; check for downsampling count
SUBI
       1,R5
BNZ
       ANC
```

* PROCESSING LOOP AT LOWER SAMPLING RATE

STF

	LDI	ORDERC, BK	;circular buffer length set to the order of MIS filters $% \left(1\right) =\left(1\right) \left(1$
	LDI	@ADDMR,AR1	;load address of right music signal(2K) buffer in AR1
	LDI	@ADDC11,AR0	;ARO points to error path (RR) estimate coefficients
	LDI	ORDERC-2,RC	;loop counter set
	LDF	@MUSICR,R0	;load the latest right music signal at 2K in RO
2K	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest right music signal at
	STI	AR1,@ADDMR	address updated
	CALL	FIR	subroutine to do FIR filtering
	STF	R0,@W11	<pre>;store output of error path (RR) filter estimate in W11</pre>
	LDI	@ADDC12,AR0	;ARO points to error path (RL) estimate coefficients
	LDI	ORDERC-2,RC	;set loop counter
	CALL	FIR	;subroutine to do FIR filtering
	STF	R0,@W12	store output of error path (RL) filter estimate in W12
	LDI	@ADDML,AR1	;load address of left music signal(2K) buffer in AR1
	LDI	@ADDC21,AR0	;ARO points to error path (LR) estimate coefficients
	LDI	ORDERC-2,RC	;loop counter set
	LDF	@MUSICL,R0	;load the latest left music signal at 2K in R0
	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest left music signal at

	STI	AR1,@ADDML	address updated
	CALL	FIR	;subroutine to do FIR filtering
	STF	R0,@W21	<pre>istore output of error path (LR) filter estimate in W21</pre>
	LDI	@ADDC22,AR0	:ARO points to error path (RR) estimate coefficients
	LDI	ORDERC-2,RC	set loop counter
	CALL	FIR	subroutine to do FIR filtering
	STF	R0,@W22	;store output of error path (LL) filter estimate in W22
*****	*****	******	*********
*	Calculat	te the internally	computed error signals *
*****	*****	******	********
	LDF	@ERRR,R4	;load the downsampled right MIC error input in R4
	LDF	@W11,R0	
	SUBF	R0,R4	
	LDF	@W21,R0	
	SUBF	R0,R4	;R4 < R4 - W11 - W21
	STF	R4,@CERRR	;store R4 in CERRR to update the filters
	LDF	@ERRL,R4	;load the downsampled right MIC error input in R4
	LDF	@W12,R0	
	SUBF	R0,R4	
	LDF	@W22,R0	
	SUBF	R0,R4	;R4 < R4 - W12 - W22
	STF	R4,@CERRL	;load the downsampled right MIC error input in R4

^{*} Estimate music signal power

```
P^x(n) = (1 - beta) * P^x(n-1) + beta * x(n) * x(n)
********************
      LDF
           @MUSICR,R5
NORMR LDF @POWERR,R0 ; P^x(n-1) \rightarrow R0
           @MBETA,R3
                       ; (1 - beta) -> R3
      LDF
                       ; (1 - beta) * P^x(n-1) -> R0
      MPYF R3,R0
                       ; x(n) * x(n) -> R1
      MPYF3 R5,R5,R1
      LDF
            @BETA,R2
                       ; beta -> R2
      MPYF
           R2,R1
                       ; beta * x(n) * x(n) -> R1
      ADDF
            R1,R0
                       ; R0 + R1 -> R0
           R0,@POWERR
      STF
                       ; R0 -> P^x(n)
      CALL
            INVER
      CMPF
            @HIEST,R0
            ENORMR
      BN
            @HIEST,R0
      LDF
******************
   Invert P^x(n) and limit to get 1/\max[P^x(n), P\min]
   (Adapted from the TMS320C30 User's Guide, 1991, p. 11-29)
ENORMR LDF
           @MUN,R5
      MPYF R0,R5
      STF
           R5,@NPOWR
      LDF
           @MUSICL,R5
****************
  Estimate left music signal power
     P^x(n) = (1 - beta) * P^x(n-1) + beta * x(n) * x(n)
```

```
NORML
      LDF
              @POWERL,R0 ; P^x(n-1) \rightarrow R0
       LDF
              @MBETA,R3 ; (1 - beta) -> R3
       MPYF
              R3,R0
                          ; (1 - beta) * P^x(n-1) -> R0
       MPYF3
              R5,R5,R1
                          ; x(n) * x(n) -> R1
             @BETA,R2
                          ; beta -> R2
       LDF
                          ; beta * x(n) * x(n) -> R1
       MPYF
             R2,R1
             R1,R0
                          ; R0 + R1 -> R0
       ADDF
                        ; R0 -> P^x(n)
       STF
              R0,@POWERL
       CALL
              INVER
       CMPF
              @HIEST,R0
       BN
              ENORML
              @HIEST,R0
       LDF
ENORML LDF
              @MUN,R5
       MPYF
              R0,R5
       STF
              R5,@NPOWL
       SUBI
              1,R6
                            ;decrement counter in R6
       BN
              UP1
                            ;branch if -ve to update C21(z) and C22(z)
                           ; load the internally computed right error in R4
       LDF
              @CERRR,R4
       MPYF
              @NPOWR,R4
                               ;multiply R4 by normalized step size
*******************
       Update MIS filter C11(z)
*****************
                           ; load address of right music signal(2K) buffer in AR1
       LDI
              @ADDMR,AR1
       LDI
              @ADDC11,AR0
                           ;ARO points to error path (RR) estimate coefficients
                            ; call subroutine to do least mean square update
       CALL
              LMS
```

Integrated Automotive Signal Processing and Audio System

*	Update MIS filter C12(z) *		

	LDF	@CERRL,R4	; load the internally computed left error in R4
	MPYF	@NPOWR,R4	;multiply R4 by normalized step size
	LDI	@ADDMR,AR1	;load address of right music signal(2K) buffer in AR1
	LDI	@ADDC12,AR0	;ARO points to error path (RL) estimate coefficients
	CALL	LMS	; call subroutine to do least mean square update
	BR	FILT	;skip the updation of MIS filters C21(z) and C22(z)
UP1	SUBI	1,R7	decrement counter in R7
	BN	RELOAD	
*****	*****	* * * * * * * * * * * * * * * * *	********
*	Update	MIS filter C21(*
*****	*****	******	********
	LDF	@CERRR,R4	;load the internally computed right error in R4
	MPYF	@NPOWL,R4	;multiply R4 by normalized step size
	LDI	@ADDML,AR1	;load address of left music signal(2K) buffer in AR1
	LDI	@ADDC21,AR0	;ARO points to error path (LR) estimate coefficients
	CALL	LMS	;call subroutine to do least mean square update
*****	*****	******	********
*	Update	MIS filter C21(z) *
*****	*****	******	********
	LDF	@CERRL,R4	;load the internally computed left error in R4
	MPYF	@NPOWL,R4	;multiply R4 by normalized step size
	LDI	@ADDML,AR1	;load address of left music signal(2K) buffer in AR1

```
LDI
             @ADDC22,AR0
                         ;ARO points to error path (LL) estimate coefficients
      CALL
             LMS
                          ; call subroutine to do least mean square update
      BR
             FILT
                          ; skip the reloading the counters
             COUNT2,R6
                          ;load counter in R6 and R7 for alternate
RELOAD LDI
      LDI
             COUNT2,R7
                          ; modeling of error paths
************
* FILTERED REFERENCE SIGNAL GENERATION
*********************
FILT
      LDI
             @ADDYF,AR1
                          ; load address of reference signal buffer in AR1
      LDI
            ORDERC-2,RC
                         ;loop counter set
            @REF,R0
                          ;load downsampled reference signal in R0
      LDF
            R0,*AR1++(1)% ;AR1 modified to point to oldest REF
      STF
            AR1,@ADDYF
      STI
                         ;address update
      LDI
             @ADDC11,AR0
                         ;ARO points to error path (RR) estimate coefficients
      CALL
             FIR
                          ; subroutine to do FIR filtering
      LDF
             R0,R3
                          ;store filtered ref. signal (RR) in R3
             @ADDYF,AR1
                          ; load address of reference signal buffer in AR1
      LDI
             ORDERC-2,RC
      LDI
                          ;loop counter set
      LDI
             @ADDC12,AR0
                          ;ARO points to error path (RL) estimate coefficients
      CALL
                          ; subroutine to do FIR filtering
************
* UPDATE REFERENCE SIGNAL BUFFER FOR x'11(n) and x'12(n)
****************
      LDI
             @ADDM11,AR1
                         ; load address of filtered-X signal (RR) buffer in AR1
      LDI
             ORDERW,BK ; circular buffer length set to order of AANC filters
            R3,*AR1++(1)% ;save filtered-X signal (RR) value
      STF
             AR1,@ADDM11
```

;address update

STT

```
LDI
           @ADDM12,AR2
                       ; load address of filtered-X signal (RL) buffer in AR1
      STF
           R0,*AR2++(1)% ;save filtered-X signal (RL) value
      STI
           AR2,@ADDM12
                       ;address update
      LDF
           @REF,R5
***********************
   Estimate reference noise signal power
     P^x(n) = (1 - beta) * P^x(n-1) + beta * x(n) * x(n)
********************
REFNOR LDF @PREF,R0 ; P^x(n-1) \rightarrow R0
     LDF
           @MBETA,R3 ; (1 - beta) -> R3
     MPYF R3,R0
                     ; (1 - beta) * P^x(n-1) -> R0
     MPYF3 R5,R5,R1
                     ; x(n) * x(n) -> R1
           @BETA,R2
      LDF
                     ; beta -> R2
     MPYF
           R2,R1
                     ; beta * x(n) * x(n) -> R1
                     ; R0 + R1 -> R0
     ADDF
           R1,R0
           R0,@PREF
                     ; R0 \rightarrow P^x(n)
      STF
      CALL
           INVER
      CMPF
           @HIEST,R0
      BN
            RENORM
      LDF
           @HIEST,R0
RENORM LDF
           @MUN,R5
      MPYF
           R0,R5
      STF
           R5,@NORMU
********************
* UPDATE W1(z)
********************
```

```
; load the internally computed right error in RO
       LDF
               @CERRR,R0
        MPYF
               @NORMU,R0
                                ;multiply R0 by normalized step size
       LDF
               @CERRL,R1
                                ; load the internally computed left error in R1
               @NORMU,R1
                                ;multiply R1 by normalized step size
       MPYF
               @ADDW1,AR0
                                ;load address of W1 filter coefficients in ARO
        LDI
        LDI
               ORDERW-1,RC
                                ;set repeat counter
       RPTB
               LMS_WA
                                ;repeat block up to LMS_WA
       MPYF3
              *AR1++(1)%,R0,R3;R3 <--- mu*e1'(n)*x'11(n)
       MPYF3
               *AR2++(1)%,R1,R4;R4 <--- mu*e2'(n)*x'12(n)
       ADDF
               R3,R4
                               ;add R3+R4
        ADDF3
               R4,*AR0,R3
                               ; calculate the new coefficient value
LMS_WA STF
               R3,*AR0++(1)
                               ;update filter W1 coefficients
```

* GENERATE RIGHT CHANNEL CANCELLING SIGNAL

```
ORDERW-2,RC
LDI
                       ;set repeat counter
LDI
       @ADDY,AR1
                       ; load address of reference signal buffer in AR1
LDI
       @ADDW1,AR0
                      ; load address of W1 filter coefficients in ARO
       @REF,R0
                       ;load downsampled reference signal in R0
LDF
STF
       R0,*AR1++(1)%
                      ;AR1 modified to point to oldest REF
STI
       AR1,@ADDY
                       ;address update
CALL
       FIR
                       ; subroutine to do FIR filtering
```

STF R0,@CANCR ;store right canceling signal at 2K in CANCR

LDI ORDERC,BK ; circular buffer length set to the order of MIS filters

```
@ADDYF,AR1
                           ; load address of reference signal buffer in AR1
      LDI
             ORDERC-2,RC
                          ;loop counter set
      LDF
             @REF,R0
                          ;load downsampled reference signal in R0
             R0,*AR1++(1)%
                          ;AR1 modified to point to oldest REF
      STF
      STI
             AR1,@ADDYF
                          ;address update
             @ADDC22,AR0
                          ;ARO points to error path (LL) estimate coefficients
      LDI
                          ; subroutine to do FIR filtering
      CALL
             FIR
      LDF
             R0,R3
                          ;store filtered ref. signal (LL) in R3
      LDI
             @ADDYF,AR1
                          ; load address of reference signal buffer in AR1
      LDI
             ORDERC-2,RC
                          ;loop counter set
      LDI
             @ADDC21,AR0
                          ;ARO points to error path (LR) estimate coefficients
                           ; subroutine to do FIR filtering
      CALL
             FTR
  ********************
* UPDATE REFERENCE SIGNAL BUFFER FOR x'21(n) and x'22(n)
*********************
      LDI
             @ADDM22,AR1 ;load address of filtered-X signal (LL) buffer in AR1
             ORDERW, BK
                          ; circular buffer length set to order of AANC filters
      LDI
             R3,*AR1++(1)% ;save filtered-X signal (LL) value
      STF
      STI
             AR1,@ADDM22
                          ;address update
            @ADDM21,AR2
                          ; load address of filtered-X signal (LR) buffer in AR1
      LDI
      STF
             R0,*AR2++(1)% ;save filtered-X signal (LR) value
      STI
             AR2,@ADDM21
                          ;address update
************************
* UPDATE W2(z)
*******************
      LDF
             @CERRR,R0
                          ; load the internally computed right error in RO
      MPYF
           @NORMU,R0
                          ; multiply R0 by normalized step size
```

LDI

```
; load the internally computed left error in R1
      LDF
             @CERRL,R1
      MPYF
             @NORMU,R1
                           ; multiply R1 by normalized step size
      LDI
             @ADDW2,AR0
                           ; load address of W1 filter coefficients in ARO
             ORDERW-1,RC
      LDI
                           ;set repeat counter
      RPTB
             LMS_WB
                           ;repeat block up to LMS_WB
      MPYF3
            *AR1++(1)%,R0,R3;R3 <--- mu*e1'(n)*x'21(n)
             *AR2++(1)%,R1,R4;R4 <--- mu*e2'(n)*x'22(n)
      MPYF3
      ADDF
             R3,R4
                           ;add R3+R4
      ADDF3
             R4,*AR0,R3
                          ; calculate the new coefficient value
LMS_WB STF
             R3,*AR0++(1) ;update filter W2 coefficients
******************
* GENERATE LEFT CHANNEL CANCELLING SIGNAL
********************
      LDI
             ORDERW-2,RC
                           ;set repeat counter
      LDI
             @ADDY,AR1
                           ; load address of reference signal buffer in AR1
                           ;load address of W1 filter coefficients in ARO
             @ADDW2,AR0
      LDI
      CALL
                           ; subroutine to do FIR filtering
             R0,@CANCL
                           ;store left canceling signal at 2K in CANCL
      STF
      LDF
             @MODE,R0
       CMPF
             @CHECK,R0
                           ;check for the mode
      BN
             HFCP
             DOWNSP,R5
                           reload the downsample count
      LDI
       BR
             ANC
                           ;branch back for next iteration
*******************
      HFCP mode: To do adaptive noise cancellation and acoustic echo
                cancellation
```

Integrated Automotive Signal Processing and Audio System

HFCP	LDF	0.0,R0	
	STF	R0,@OUTR	
	STF	R0,@OUTL	;setting the output's in AANC mode to zero
	STF	R0,@CANCRH	
	STF	R0,@CANCLH	
	LDF	@COUNTER,R6	;set counter for initial modeling
	LDI	ECHOFIL, BK	;load the size of echo path filter in BK register
NEXT	IDLE		
	SUBF	0.25,R6	; check for the initial modeling counter
	BN	NEXT1	;if expired stop initial modeling
	LDF	@MUSICRH,R0	;load the latest music signal in R0
	STF	R0,@OUTR	;send out R0 through the right speaker
	LDI	@ADDW,AR1	;load address of right music signal buffer in AR1
	LDI	@ADDEFIL,AR0	;load the address of echo path filter in ARO
	LDI	ECHOFIL-2,RC	<pre>;set loop counter</pre>
	STF	R0,*AR1++(1)%	;AR1 modified to point to oldest right music signal
	STI	AR1,@ADDW	address update
	CALL	FIR	subroutine to do FIR filtering
	LDF	@ERRLH,R4	get the signal picked up by left MIC in R4
	SUBF	R0,R4	;calculate the internal error
	MPYF	@MU,R4	;multiply R4 with the normalized step size
	LDI	@ADDW,AR1	;load address of right music signal buffer in AR1
	LDI	@ADDEFIL,AR0	; load the address of echo path filter in ARO
	LDI	ECHOFIL-2,RC	;set loop counter
	CALL	LMS	; call subroutine to do least mean square update
	BR	NEXT	;loop back

```
After initial modeling of echo path..full HFCP mode is ON now
NEXT1 LDF
               0.0,R0
              R0,@OUTR
                              ; initialize the variables to zero
       STF
       STF
              R0,@RESECHO
              1,R6
                             ;set initial hangover counter for far-end speech to 1
       LDI
       LDI
              1,R7
                              ;set initial hangover counter for double talk to 1
ECHO
       IDLE
       LDF
               @MODE,R0
       CMPF
               @CHECK,R0
                             ; check for the mode
       BNN
               AANC
```


*	Adaptive noise cancellation (ANC)

	LDF	@REF,R0	; load the reference noise signal in R0
	LDI	@ADDENC,AR0	; load the address of ANC filter in ARO
3.0.1	LDI	@ADDR,AR1	;load the address of reference noise signal buffer in
AR1			
	LDI	ORDERWA, BK	; circular buffer length set to the order of ANC filter $% \left(1\right) =\left(1\right) \left(1$
	STF	R0,*AR1++(1)%	;AR1 modified to point to the oldest reference noise
signal			
	STI	AR1,@ADDR	address update
	LDI	ORDERW-2,RC	;set loop counter
	CALL	FIR	;subroutine to do FIR filtering
	LDF	@ERRLH,R4	; load the left MIC input in R4

	SUBF	R0,R4	;calculate the difference to remove noise			
	STF	R4,@ECNOUT	store the noise free input in ENCOUT			
	MPYF	@MU,R4	;multiply ENCOUT with normalized step size			
	LDI	@ADDR,AR1	; load the address of reference noise signal buffer in			
AR1						
	LDI	@ADDENC,AR0	;load the address of ANC filter in ARO			
	LDI	ORDERW-2,RC	;set loop counter			
	CALL	LMS	call subroutine to do least mean square update			
	LDF	@FARENSP,R0	;load far end reference speech in RO			
	STF	R0,@OUTR	send out far-end speech through the loudspeaker			
;Call s	subrouti	nes to calculate	the power estimates for the three windows			
	CALL	VSPOWER	; call subroutine to calculate very short window power			
estimat						
estimat	CALL te	SPOWER	;call subroutine to calculate short window power			
	CALL	LPOWER	; call subroutine to calculate long window power			
estimat	te					
	SUBF3	R2,R3,R4	;check if SPOWER > LPOWER			
	BN	WIN1	; If not , do not swap			
	LDF	R2,R3	; change long window to short window			
WIN1	SUBF	R3,R1	;sub very short window from short window			
	SUBF	@SPTHR,R1	compare result with speech threshold			
	BN	DN	skip speech flag over if speech not PRESENT			
	LDI	HOCNT, R6	;set the far-end speech hangover counter			
	LDI	@ADDEFIL,AR0	; load the address of echo path filter in ARO			
	LDI	@ADDFENS,AR1	; load the address of far-end speech signal buffer in			
AR1						
	LDI	ECHOFIL-2,RC	;set loop counter			
	LDF	@FARENSP,R0	;load far end reference speech in RO			
	STF	R0,*AR1++(1)%	;AR1 points to the oldest far-end speech			

```
STI
               AR1,@ADDFENS
                             ;address update
       CALL
               FIR
                             ; call subroutine to do FIR filtering
       LDF
               @ECNOUT,R1
                              ; load the output of ANC in R1
       SUBF
               R0,R1
                              ; subtract the FIR output from R1 to cancel echo
       STF
               R1,@RESECHO
                              ;store R1 in RESECHO
************
       Double Talk detection
*********************
       LDF
              @ECNOUT,R0
                             ; load the output of ANC in RO
       CALL
              SPOWDT1
                             ; call subroutine to calculate power of RO
       LDF
              R2,R3
                             ;store new power in R3
              @RESECHO,RO
                             ; load the residual echo signal in RO
       LDF
       CALL
              SPOWDT2
                             ; call subroutine to calculate power in RO
              R2,R0
                             ;load new power in R0
       LDF
              INVERF
                              ; call routine to find inverse of RO
       CALL
                              ;R0=R3/R0
       MPYF
               R3,R0
       SUBF
               @THRESDT,R0
                              ; check if RO is greater than double talk threshold
       BNN
                              ; if yes branch to check for hangover counter for far-
end speech
       LDI
               HC,R7
                              ;else load hangover counter for Double talk
       BR
               ECHO
                              ;branch back for next iteration
NT1
       SUBI
               1,R7
                              ;decrement the hangover counter for Double talk
       BNZ
               ECHO
                              ; if not zero branch back for next iteration
                              ;else do update of echo path filter
       LDF
               @FARENSP,R5
                              ;load the current speech sample in R5
       LDF
               @ECHOPO,R0
                             P^x(n-1) -> R0
               @MBETA,R3
                              ;(1 - beta) -> R3
       LDF
               R3,R0
                              i(1 - beta) * P^x(n-1) -> R0
       MPYF
       MPYF3
               R5,R5,R1
                              x(n) * x(n) \rightarrow R1
```

;beta -> R2

;beta * x(n) * x(n) -> R1

LDF

MPYF

@BETA,R2

R2,R1

```
ADDF
                               ;R0 + R1 -> R0
               R1,R0
        STF
               R0,@ECHOPO
                               ;R0 \rightarrow P^x(n)
       CALL
               INVERF
                               ; call subroutine to find the inverse of power
        CMPF
               @HIEST,R0
                               ;compare 1/P^x with 1/Pmin
        BN
               ENORM
                               ;if 1/P^x < 1/Pmin, branch to ENORM
       LDF
               @HIEST,R0
                               ; if 1/P^x > 1/Pmin, R0 = 1/Pmin
               **************
     Compute adaptive step size
      mu(n) = (alpha/L) / max[P^x(n), Pmin]
ENORM
       LDF
               @MUN,R4
                               ; calculate the normalized step size
       MPYF
               R0,R4
               @RESECHO,RO
       LDF
       MPYF
               R0,R4
                               ;multiply normalized step size with residual echo
       LDI
               @ADDEFIL,AR0
                               ; load the address of echo path filter in ARO
       LDI
               ECHOFIL-2,RC
                               ;set loop counter
       LDI
               @ADDFENS,AR1
                               ; load the address of far-end speech signal buffer in
AR1
        CALL
               LMS
                               ; call subroutine to do least mean square update
               1,R7
                               ;reset the double talk hangover counter
       T.DT
       BR
               ECHO
                               ;branch back for next iteration
DN
       SUBI
               1,R6
                               ;decrement the hangover counter for far-end speech
        BZ
               ENDFLAG
                               ;if zero=no far-end speech
       LDI
               @ADDEFIL,AR0
                               ; load the address of echo path filter in ARO
       LDI
               @ADDFENS,AR1
                               ; load the address of far-end speech signal buffer in
AR1
               ECHOFIL-2,RC
       LDI
                               ;set loop counter
```

```
LDF
             @FARENSP,R0
                          ;load far end reference speech in RO
      STF
             R0,*AR1++(1)% ;AR1 points to the oldest far-end speech
      STI
             AR1,@ADDFENS
                          ;address update
                          ; call subroutine to do FIR filtering
      CALL
             FIR
      LDF
             @ECNOUT,R1
                          ; load the output of ANC in R1
      SUBF
             R0,R1
                          ; subtract the FIR output from R1 to cancel echo
      STF
             R1,@RESECHO
                          ;store R1 in RESECHO
*********************
      Double Talk detection
*******************
      LDF
             @ECNOUT,R0
                          ;load the output of ANC in R0
            SPOWDT1
                          ; call subroutine to calculate power of RO
      CALL
      LDF
            R2,R3
                          ;store new power in R3
```

CALL SPOWDT2 ; call subroutine to calculate power in R0

LDF R2,R0 ;load new power in R0

CALL INVERF ; call routine to find inverse of RO

MPYF R3,R0 ;R0=R3/R0

@RESECHO,RO

SUBF @THRESDT,R0 ;check if R0 is greater than double talk threshold
BNN NT2 ;if yes branch to check for hangover counter for far-

; load the residual echo signal in RO

end speech

LDF

LDI $\mbox{HC,R7}$;else load hangover counter for Double talk

BR ECHO ; branch back for next iteration

NT2 SUBI 1,R7 ;decrement the hangover counter for Double talk
BNZ ECHO ;if not zero branch back for next iteration

;else do update of echo path filter

LDF @FARENSP,R5 ;load the current speech sample in R5

LDF @ECHOPO,R0 ; $P^x(n-1) \rightarrow R0$ LDF @MBETA,R3 ; $(1 - beta) \rightarrow R3$

MPYF R3,R0 ; $(1 - beta) * P^x(n-1) -> R0$

MPYF3 R5,R5,R1 $(x(n) * x(n) \rightarrow R1$

```
@BETA,R2
                              ;beta -> R2
       LDF
       MPYF
               R2,R1
                              ;beta * x(n) * x(n) -> R1
       ADDF
               R1,R0
                               ;R0 + R1 -> R0
               R0,@ECHOPO
                               ;R0 \rightarrow P^x(n)
       STF
       CALL
               INVERF
                               ; call subroutine to find the inverse of power
       CMPF
               @HIEST,RO
                              ;compare 1/P^x with 1/Pmin
               ENORM1
                               ;if 1/P^x < 1/Pmin, branch to ENORM1
       BN
                               ; if 1/P^x > 1/Pmin, R0 = 1/Pmin
       LDF
               @HIEST,R0
    Compute adaptive step size
      mu(n) = (alpha/L) / max[P^x(n), Pmin]
************
ENORM1 LDF
               @MUN,R4
                              ; calculate the normalized step size
       MPYF
               R0,R4
               @RESECHO,RO
       LDF
       MPYF
               R0,R4
                              ;multiply normalized step size with residual echo
               @ADDEFIL,AR0
                              ; load the address of echo path filter in ARO
       LDI
       LDI
               ECHOFIL-2,RC
                              ;set loop counter
       LDI
               @ADDFENS,AR1
                              ; load the address of far-end speech signal buffer in
AR1
       CALL
               T<sub>-</sub>MS
                               ; call subroutine to do least mean square update
       LDI
               1,R7
                               ;reset the double talk hangover counter
       BR
               ECHO
                               ;branch back for next iteration
ENDFLAG LDF
               @ECNOUT,R0
                              ;if no far-end speech present
       STF
               R0,@RESECHO
                              ; send output of ANC as transmit signal
       LDI
               1,R6
                               ;reset hanover counter for far-end speech
               ECHO
                               ;branch back for next iteration
       BR
```

```
Speech Power Signal Interrupt Service Routine (Very Short Window)
   For speech detections - 4ms window
   Parameter passed in as RO passed out as R1
   Overwritten registers - R1,R4
*******************
VSPOWER MPYF3 R0,R0,R1 ; Square input
      MPYF @VSBETA,R1
                        ; Weight input
      LDF @VSOPOWE,R4
                        ; Weight old input
      MPYF @VSOMBET,R4
      ADDF3 R1,R4,R1
                      ; Add together
      STF
            R1,@VSOPOWE ; Store in old power for next iteration
      RETS
   Speech Power Signal Interrupt Service Routine (Short Window)
   For speech detections - 16ms window
   Parameter passed in as RO passed out as R2
   Overwritten registers - R2,R4
**************
SPOWER MPYF3 R0,R0,R2 ; Square input
     MPYF @SBETA,R2
                        ; Weight input
```

```
@SOPOWER,R4 ; Weight old input
      LDF
      MPYF
            @SOMBETA,R4
                     ; Add together
      ADDF3 R2,R4,R2
            R2,@SOPOWER ; Store in old power for next iteration
      STF
      RETS
   Power Signal Interrupt Service Routine (Long window)
   For convergence of error signal - 1 s window
   Parameter passed in as RO passed out as R3
   Overwritten registers - R3,R4
********************
LPOWER MPYF3 R0,R0,R3
                     ; Square input
      MPYF @LBETA,R3 ; Weight input
      LDF
           @LOPOWER,R4
                        ; Weight old input
      MPYF @LOMBETA,R4
      ADDF3 R3,R4,R3
                        ; Add together
            R3,@LOPOWER ; Store in old power for next iteration
      STF
      RETS
**************
SPOWDT1 MPYF3 R0,R0,R2
                        ; Square input
                        ; Weight input
      MPYF @VSBETA,R2
      LDF @SOPODT1,R4
                        ; Weight old input
      MPYF @VSOMBET,R4
      ADDF3 R2,R4,R2
                      ; Add together
            R2,@SOPODT1 ; Store in old power for next iteration
      STF
```

```
SPOWDT2 MPYF3
              R0,R0,R2
                               ; Square input
       MPYF
               @VSBETA,R2
                               ; Weight input
                               ; Weight old input
       LDF
               @SOPODT2,R4
       MPYF
               @VSOMBET,R4
       ADDF3
               R2,R4,R2
                               ; Add together
       STF
               R2,@SOPODT2
                               ; Store in old power for next iteration
       RETS
INVER
                               ; push floating point value of P^x
         PUSHF
                 R0
         POP
                 R1
                               ; pop value as signed integer -> R1
         ASH
                 -24,R1
                               ; right shift 24 bits to get exponent e
         NEGI
                 R1
                               ; negate exponent to get -e
         SUBI
                 1,R1
                               ; R1 = -e - 1, the exponent of x[0]
                               ; left shift 24 bits
                 24,R1
         ASH
                               ; push floating point value
         PUSH
                 R1
                               ; R1 = x[0] = 1.0 * 2**(-e - 1)
         POPF
                 R1
         MPYF3
                 R1,R0,R2
                               ; R2 = P^x * x[0]
                 2.0,R2
                               ; R2 = 2.0 - P^x * x[0]
         SUBRF
         MPYF
                 R2,R1
                               ; R1 = x[1] = x[0] * (2.0 - P^x * x[0])
         MPYF3
                 R1,R0,R2
                               ; R2 = P^x * x[1]
          SUBRF
                 2.0,R2
                               ; R2 = 2.0 - P^x * x[1]
                               ; R1 = x[2] = x[1] * (2.0 - P^x * x[1])
                 R2,R1
         MPYF
                               ; R2 = P^x * x[2]
         MPYF3
                 R1,R0,R2
         SUBRF
                 2.0,R2
                               ; R2 = 2.0 - P^x * x[2]
                 R2,R1
                               ; R1 = x[3] = x[2] * (2.0 - P^x * x[2])
         MPYF
```

 $; R2 = P^x * x[3]$

 $; R2 = 2.0 - P^x * x[3]$

R1,R0,R2

2.0,R2

MPYF3 SUBRF

RETS

```
R2,R1
                             R1 = x[4] = x[3] * (2.0 - P^x * x[3])
         MPYF
         RND
                R1
                             ; This minimizes error in the LSBs
         MPYF3
                R1,R0,R2
                             ; R2 = P^x * x[4]
                1.0,R2
                             ; R2 = 1.0 - P^x * x[4]
         SUBRF
         MPYF
                R1,R2
                              ; R2 = x[4] * (1.0 - P^x * x[4])
         ADDF
                R2,R1
                              ; R1 = x[5] = x[4] * (1.0 - P^x * x[4]) + x[4]
         RND
                R1,R0
                              ; round x[5] \rightarrow R0 = 1/P^x
*******************
       Subroutine to do FIR filtering
  *******************
FIR
       MPYF3
             *AR0++(1)%,*AR1++(1)%,R0
                                             ; multiplies W_A(N-1)*x(n-(N-1))
                                             ;W_A(N-1) is the N-1 th filter
                                             ;coefficient pointed to by ARO
                                             ; and x(n-(N-1)) is the oldest input
                                             ;signal data pointed by AR1
       NOP
                                             ;initialize R2 to 0
              0.0,R2
       LDF
       RPTS
                                             ;set up counter to perform summation
                                             ; from 0 to N-2, where N is the order of
                                             ;the filter concerned
                                             ;multiple remaining [0,..,N-2] filter
       MPYF3
              *AR0++(1)%,*AR1++(1)%,R0
                                             ; coefficients with input signal
                                             ;data x(n), ....x(n-(N-2)) and save
                                             result in R0
    || ADDF3
              R0,R2,R2
                                             ; in addition to multiplication add
                                             ;previous summation into R2 thus
                                             ;performing convolution between filter
                                             ; coefficients and signal data
       ADDF3
             R0,R2,R0
                                             ;add last product
       RETS
                                             return to main program;
```

Integrated Automotive Signal Processing and Audio System

*	Subrou	Subroutine to perform LMS adaption *						
*****	************							
LMS	MPYF3	*AR1++(1)%,R4,	R1	;x(n-(N-1))*mu*err> R1				
				;multiply oldest signal data wit	h the			
				;product of mu and error signal	e(n)			
	RPTB	ADAP		;repeat N-2 times where N is the	order			
				of filter being updated				
	MPYF3	*AR1++(1)%,R4,R1		;multiply remaining signal vector data				
				; with product $mu*e(n)$ and save result in R1				
	ADDF3	DDF3 R1,*AR0,R2		;in parallel, add the previous p	roduct to			
				;corresponding adaptive filter c	oefficient			
				;to get new coefficient				
ADAP	STF	R2,*AR0++(1)		;update the filter coefficients				
	NOP							
	ADDF3	R1,*AR0,R2		;add last product				
	STF	R2,*AR0		;update 0th filter coefficient				
	RETS			return to the main program				
*****	*****	******	******	* * * * * * * * * * * * * * * * * * * *				
*	Interr	upt service rout	ine for b	both system board and I/O board	*			
*	4 Chani	nel I/O board			*			
*		Channel A0:	Input :	From right microphone	*			
*			Output:	To right speaker	*			
*					*			
*		Channel A1:	Input :	From left microphone	*			
*			Output:	To left speaker	*			
*					*			
*		Channel B0	Input :	Stereo system input	*			
*					*			
*		Channel B1	Input :	Reference noise signal input	*			
*					*			
*	System	Board			*			
*		Channel A	Input :	Mode input	*			

```
Channel B
                              Input :Receive signal from cellular phone
                              Output:Transmit signal to cellular phone
              ***************
ISR:
       PUSHF
               R4
       PUSH
               R4
       PUSHF
               R5
       PUSH
               R5
       PUSH
               AR0
       PUSH
               AR1
       LDI
               @BRDIS_A,AR1
                              ;Load the board status
       LDI
               *AR1,R1
       TSTB
               @TSTMASK,R1
                              ;Test to see if interrupt is from site A
       BNZ
               ISR_END
                              ;Branch if not
               @INTS_A,AR1
       LDI
               *AR1,R1
       LDI
               @CH0_A,AR1
                              ; load the address of channel A0 in AR1
       LDI
       LDI
               *AR1,R5
                              ;store value from A/D in R5
                              ;shift by 16 bits
               -16,R5
       ASH
               R5,R5
                              ; convert to floating point format
       FLOAT
       MPYF
               @S32768,R5
                              ;scale the input
                              ;store the right MIC input
       STF
               R5,@ERRRH
       LDF
               @OUTR,R5
                              ;get right speaker output in R5
       LDF
               @CANCRH,R4
                              ;get right channel cancelling signal in R4
                              ;add R4 and R5
       ADDF
               R4,R5
               @S32767,R5
                              ;scale R5 by 32767
       MPYF
               R5,R5
                              ;convert R5 to integer value
       FIX
       LSH
               16,R5
                              ;shift left by 16 bits
               R5,*AR1
                              ;output signal to secondary source
       STI
       LDI
               @CH1_A,AR1
                              ; load address of channel A1 in AR1
```

LDI	*AR1,R5	;store value from A/D in R5				
ASH	-16,R5	shift by 16 bits				
FLOAT	R5	; convert to floating point format				
MPYF	@S32768,R5	;scale the input				
STF	R5,@ERRLH	;store the left MIC input				
LDF	@OUTL,R5	;get left speaker output in R5				
LDF	@CANCLH,R4	;get left channel cancelling signal in R4				
ADDF	R4,R5	;add R4 and R5				
MPYF	@S32767,R5	;scale R5 by 32767				
FIX	R5,R5	;convert R5 to integer value				
LSH	16,R5	;shift left by 16 bits				
STI	R5,*AR1	;output signal to secondary source				
LDI	@CH0_B,AR1	;load address of channel B0 in AR1				
LDI	*AR1,R5	;store value from A/D in R5				
ASH	-16,R5	;shift by 16 bits				
FLOAT	R5	; convert to floating point format				
MPYF	@S32768,R5	;scale the input				
STF	R5,@MUSICRH					
STF	R5,@MUSICLH	;store the stereo system input				
LDI	@CH1_B,AR1	;load address of channel B1 in AR1				
LDI	*AR1,R5	;store value from A/D in R5				
ASH	-16,R5	;shift by 16 bits				
FLOAT	R5	; convert to floating point format				
MPYF	@S32768,R5	;scale the input				
STF	R5,@REFH	;store the reference noise signal				

I/O on the system board						

@ADDCHA,AR1 ;load address of channel A in AR1 LDI LDI *AR1,R5 ;store value from A/D in R5

ASH	-16,R5	shift by 16 bits				
FLOAT	R5	convert to floating point format				
MPYF	@S32768,R5	;scale the input				
LDI	@DELAY1,AR0	;load address of delay buffer 1 in ARO				
LDI	DELAY, BK	circular buffer size set to delay;				
LDF	*AR0,R4	;load the delayed input in R4				
STF	R4,@MODE	store the delayed input				
STF	R5,*AR0++(1)%	;store the current input at the address pointed by ARO				
STI	AR0,@DELAY1	;update address				
LDI	@ADDCHB,AR1	;load address of channel B in AR1				
LDI	*AR1,R5	store value from A/D in R5				
ASH	-16,R5	;shift by 16 bits				
FLOAT	R5	convert to floating point format				
MPYF	@S32768,R5	scale the input				
LDI	@DELAY2,AR0	;load address of delay buffer 2 in ARO				
LDF	*AR0,R4	;load the delayed input in R4				
STF	R4,@FARENSP	store the delayed input				
STF	R5,*AR0++(1)%	;store the current input at the address pointed by $\ensuremath{AR0}$				
STI	AR0,@DELAY2	;update address				
LDI	@DELAY3,AR0	;load address of delay buffer 3 in ARO				
LDF	*AR0,R5	;load the delayed output in R5				
LDF	@RESECHO,R4	;load the current output in R4				
STF	D4 +3D0 /1\0.					
	R4,*AR0++(1)%	store the current output at the address point by ARO				
STI	AR0,@DELAY3	<pre>;store the current output at the address point by ARO ;address update</pre>				
STI						
STI MPYF						
	AR0,@DELAY3	address update				
MPYF	AR0,@DELAY3 @S32767,R5	;address update ;scale R5 by 32767				

ISR_END:

AND	OFFFEh, IF	;Clear	the	C30′s	interrupt	register	£
POP	AR1						
POP	AR0						
POP	R5						
POPF	R5						
POP	R4						
POPF	R4						
RETI		return	n fro	m the	interrupt	service	routine
.end							