

600V, 44A, 0.011 Ω Max, $t_{\mbox{rr}} \leq$ 250ns

N-Channel Ultrafast Recovery FREDFET

Power MOS 8^{TM} is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for maximum reliability in ZVS phase shifted bridge and other circuits through much reduced t_{rr} , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of $C_{\text{rss}}/C_{\text{iss}}$ result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.

FEATURES

- · Fast switching with low EMI
- Very Low t_{rr} for maximum reliability
- Ultra low C_{rss} for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant

TYPICAL APPLICATIONS

- · ZVS phase shifted and other full bridge
- · Half bridge
- UPS
- Welding
- · Solar inverters
- · Telecom rectifiers

Absolute Maximum Ratings

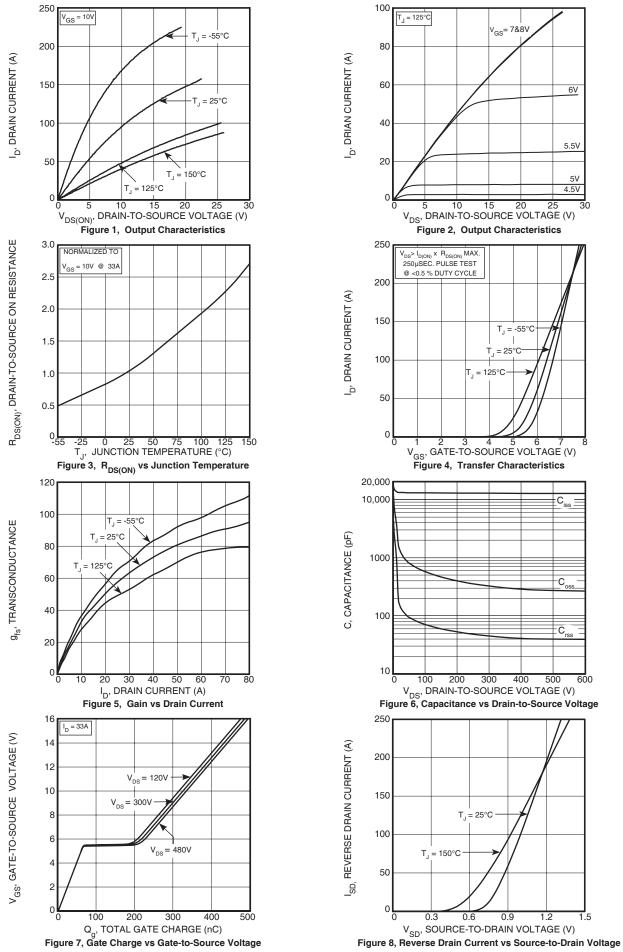
Symbol	Parameter	Ratings	Unit
I_	Continuous Drain Current @ T _C = 25°C	44	
D 'D	Continuous Drain Current @ T _C = 100°C	28	А
I _{DM}	Pulsed Drain Current ^①	245	
V _{GS}	Gate-Source Voltage	±30	V
E _{AS}	Single Pulse Avalanche Energy®	1845	mJ
I _{AR}	Avalanche Current, Repetitive or Non-Repetitive	33	Α

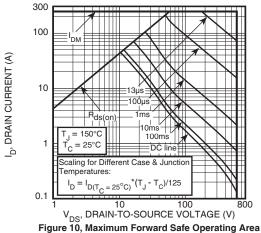
Thermal and Mechanical Characteristics

Symbol	Characteristic		Тур	Max	Unit	
P _D	Total Power Dissipation @ T _C = 25°C			540	W	
$R_{ hetaJC}$	Junction to Case Thermal Resistance			0.23	0.23 °C/W	
$R_{\theta CS}$	Case to Sink Thermal Resistance, Flat, Greased Surface		0.15			
T _J ,T _{STG}	Operating and Storage Junction Temperature Range			150	°C	
V _{Isolation}	RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)				V	
W _T	Package Weight		1.03		OZ	
			29.2		g	
Torque	Tamping In and Manustina Communication		·	10	in·lbf	
	Terminals and Mounting Screws.			1.1	N·m	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _{BR(DSS)}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250\mu A$	600			V
$\Delta V_{BR(DSS)}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D = 250μA		0.57		V/°C
R _{DS(on)}	Drain-Source On Resistance [®]	$V_{GS} = 10V, I_{D} = 33A$		0.091	0.11	Ω
V _{GS(th)}	Gate-Source Threshold Voltage	V - V 1 - 2.5mA	3	4	5	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}, I_D = 2.5 \text{mA}$		-10		mV/°C
,	Zero Gate Voltage Drain Current	$V_{DS} = 600V$ $T_{J} = 25^{\circ}C$			100	μA
DSS		$V_{GS} = 0V$ $T_J = 125^{\circ}C$			1000	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = ±30V			±100	nA

Dynamic Characteristics


T₁ = 25°C unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
g _{fs}	Forward Transconductance	$V_{DS} = 50V, I_{D} = 33A$		65		S
C _{iss}	Input Capacitance	V 0V V 05V		13190		
C _{rss}	Reverse Transfer Capacitance	$V_{GS} = 0V, V_{DS} = 25V$ f = 1MHz		135		
C _{oss}	Output Capacitance	7 - 111112		1210		
$C_{o(cr)} {}^{\textcircled{\tiny 4}}$	Effective Output Capacitance, Charge Related	V 0V V 0V to 400V		645		pF
C _{o(er)} ⑤	Effective Output Capacitance, Energy Related	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V$		335		
Q _g	Total Gate Charge	V 0. 40V 1 00A		330		
Q_{gs}	Gate-Source Charge	$V_{GS} = 0 \text{ to } 10V, I_{D} = 33A,$ $V_{DS} = 300V$		70		nC
Q_{gd}	Gate-Drain Charge	v _{DS} = 300v		140		
t _{d(on)}	Turn-On Delay Time	Resistive Switching		75		
t _r	Current Rise Time	V _{DD} = 400V, I _D = 33A		85		ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 2.2\Omega^{\textcircled{6}}, V_{GG} = 15V$		225		115
t _f	Current Fall Time			70		

Source-Drain Diode Characteristics

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
I _s	Continuous Source Current (Body Diode)	MOSFET symbol showing the				44	Α
I _{SM}	Pulsed Source Current (Body Diode) ¹	integral reverse p-n junction diode (body diode)	GU TI			245	^
V _{SD}	Diode Forward Voltage	$I_{SD} = 33A, T_{J} = 25^{\circ}C, V_{GS} = 0V$				1.0	V
t _{rr}	Reverse Recovery Time		T _J = 25°C			250	ns
rr			T _J = 125°C			460	118
Q _{rr}	Reverse Recovery Charge	I _{SD} = 33A ^③	T _J = 25°C		1.27		μC
rr		di _{SD} /dt = 100A/μs	T _J = 125°C		3.32		μΟ
1	Reverse Recovery Current	$V_{DD} = 100V$ $T_{J} = 25^{\circ}C$ $T_{J} = 125^{\circ}C$	T _J = 25°C		9.1		Α
'rrm			T _J = 125°C		13.5		^
dv/dt	Peak Recovery dv/dt	$I_{SD} \le 33A$, di/dt $\le 1000A/\mu s$, $V_{DD} = 400V$, $T_{J} = 125^{\circ}C$				30	V/ns

- (1) Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- ② Starting at $T_J = 25$ °C, L = 3.39 mH, $R_G = 2.2\Omega$, $I_{AS} = 33$ A.
- 3 Pulse test: Pulse Width < 380µs, duty cycle < 2%.
- (4) $C_{o(cr)}$ is defined as a fixed capacitance with the same stored charge as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. (5) $C_{o(er)}$ is defined as a fixed capacitance with the same stored energy as C_{OSS} with $V_{DS} = 67\%$ of $V_{(BR)DSS}$. To calculate $C_{o(er)}$ for any value of V_{DS} less than $V_{(BR)DSS}$, use this equation: $C_{o(er)}$ = -1.28E-7/ V_{DS} ^2 + 5.36E-8/ V_{DS} + 2.00E-10.
- ⑥ R_G is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Z_{FXT} are the external thermal

impedances: Case to sink, sink to ambient, etc. Set to

zero when modeling only

the case to junction.

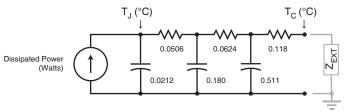
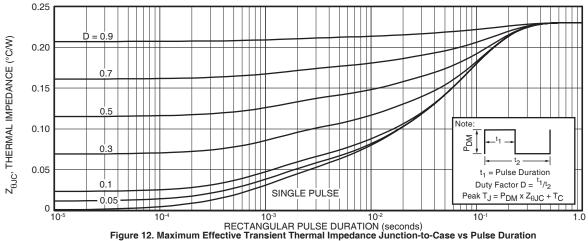
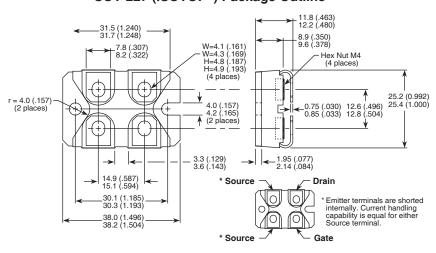




Figure 11, Transient Thermal Impedance Model

SOT-227 (ISOTOP®) Package Outline

