GENERAL DESCRIPTION
Glass passivated triacs in a full pack, plastic envelope, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MAX.</th>
<th>MAX.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DRM}</td>
<td>Repetitive peak off-state voltages</td>
<td>BT139F-500</td>
<td>500</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>I_{(RMS)}</td>
<td>RMS on-state current</td>
<td>BT139F-600</td>
<td>16</td>
<td>140</td>
<td>A</td>
</tr>
<tr>
<td>I_{TSM}</td>
<td>Non-repetitive peak on-state current</td>
<td>BT139F-800</td>
<td>16</td>
<td>140</td>
<td>A</td>
</tr>
</tbody>
</table>

PINNING - SOT186

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>main terminal 1</td>
</tr>
<tr>
<td>2</td>
<td>main terminal 2</td>
</tr>
<tr>
<td>3</td>
<td>gate</td>
</tr>
<tr>
<td>case</td>
<td>isolated</td>
</tr>
</tbody>
</table>

PIN CONFIGURATION

![PIN CONFIGURATION Diagram]

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DRM}</td>
<td>Repetitive peak off-state voltages</td>
<td>full sine wave; T_{ns} ≤ 38 °C</td>
<td>-</td>
<td>500’</td>
<td>600’</td>
<td>800’</td>
</tr>
<tr>
<td>I_{(RMS)}</td>
<td>RMS on-state current</td>
<td>full sine wave; T_{j} = 125 °C prior to surge; with reapplied V_{DRM(max)}</td>
<td>-</td>
<td>16</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_{TSM}</td>
<td>Non-repetitive peak on-state current</td>
<td>t = 20 ms</td>
<td>-</td>
<td>140</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_{2t}</td>
<td>Repetitive rate of rise of on-state current after triggering</td>
<td>t = 16.7 ms</td>
<td>-</td>
<td>150</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>dl/dt</td>
<td>Rate of rise of current</td>
<td>t = 10 ms</td>
<td>-</td>
<td>98</td>
<td>A’s</td>
<td></td>
</tr>
<tr>
<td>I_{GM}</td>
<td>Peak gate current</td>
<td>I_{RM} = 20 A; I_{G} = 0.2 A; dl/dt = 0.2 A/μs</td>
<td>T2+ G+</td>
<td>-</td>
<td>50</td>
<td>A/μs</td>
</tr>
<tr>
<td>V_{GM}</td>
<td>Peak gate voltage</td>
<td>T2+ G+</td>
<td>-</td>
<td>50</td>
<td>A/μs</td>
<td></td>
</tr>
<tr>
<td>P_{GM}</td>
<td>Peak gate power</td>
<td>T2+ G-</td>
<td>-</td>
<td>50</td>
<td>A/μs</td>
<td></td>
</tr>
<tr>
<td>P_{G(AV)}</td>
<td>Average gate power</td>
<td>T2- G-</td>
<td>-</td>
<td>10</td>
<td>A/μs</td>
<td></td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage temperature</td>
<td>T2- G+</td>
<td>-</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>T_{j}</td>
<td>Operating junction temperature</td>
<td>over any 20 ms period</td>
<td>-</td>
<td>5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>T_{s}</td>
<td>Operating junction temperature</td>
<td>-</td>
<td>5</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{m}</td>
<td>Average operating temperature</td>
<td>-</td>
<td>0.5</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{u}</td>
<td>Storage temperature</td>
<td>-</td>
<td>150</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{j}</td>
<td>Operating junction temperature</td>
<td>-</td>
<td>125</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 15 A/μs.
ISOLATION LIMITING VALUE & CHARACTERISTIC

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{isol}</td>
<td>Repetitive peak voltage from all three terminals to external heatsink</td>
<td>R.H. $\leq 65%$; clean and dustfree</td>
<td>-</td>
<td></td>
<td>1500</td>
<td>V</td>
</tr>
<tr>
<td>C_{isol}</td>
<td>Capacitance from T2 to external heatsink</td>
<td>$f = 1$ MHz</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

THERMAL RESISTANCES

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{th j-hs}}$</td>
<td>Thermal resistance junction to heatsink</td>
<td>full or half cycle with heatsink compound</td>
<td>-</td>
<td>-</td>
<td>4.0</td>
<td>K/W</td>
</tr>
<tr>
<td>$R_{\text{th j-a}}$</td>
<td>Thermal resistance junction to ambient</td>
<td>without heatsink compound</td>
<td>-</td>
<td></td>
<td>5.5</td>
<td>K/W</td>
</tr>
</tbody>
</table>

STATIC CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{GT}</td>
<td>Gate trigger current</td>
<td>$V_D = 12$ V; $I_T = 0.1$ A</td>
<td>BT139F-F</td>
<td>...</td>
<td>...F</td>
<td>...G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2+ G+</td>
<td>5</td>
<td>35</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2+ G-</td>
<td>8</td>
<td>35</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2- G-</td>
<td>10</td>
<td>35</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2- G+</td>
<td>22</td>
<td>70</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>I_L</td>
<td>Latching current</td>
<td>$V_D = 12$ V; $I_{\text{GT}} = 0.1$ A</td>
<td>-</td>
<td>7</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2+ G+</td>
<td>20</td>
<td>60</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2+ G-</td>
<td>8</td>
<td>40</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2- G-</td>
<td>10</td>
<td>60</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>I_H</td>
<td>Holding current</td>
<td>$V_D = 12$ V; $I_{\text{GT}} = 0.1$ A</td>
<td>-</td>
<td>6</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>V_T</td>
<td>On-state voltage</td>
<td>$I_T = 20$ A</td>
<td>-</td>
<td></td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>V_{GT}</td>
<td>Gate trigger voltage</td>
<td>$V_D = 12$ V; $I_{\text{T}} = 0.1$ A</td>
<td>-</td>
<td>0.7</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_D = 400$ V; $I_T = 0.1$ A; $T_J = 125$ °C</td>
<td>0.25</td>
<td>0.4</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Off-state leakage current</td>
<td>$V_D = V_{\text{DRM(max)}}$; $T_J = 125$ °C</td>
<td>-</td>
<td>0.1</td>
<td>0.5</td>
<td>mA</td>
</tr>
</tbody>
</table>
Dynamic Characteristics

\(T_j = 25 \, ^{\circ}\text{C} \) unless otherwise stated

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dV_{d}/dt)</td>
<td>Critical rate of rise of off-state voltage</td>
<td>(V_{DM} = 67% , V_{DRM(max)}); (T_j = 125 , ^{\circ}\text{C}); exponential waveform; gate open circuit</td>
<td>100</td>
<td>50</td>
<td>200</td>
<td>V/(\mu)s</td>
</tr>
<tr>
<td>(dV_{com}/dt)</td>
<td>Critical rate of change of commutating voltage</td>
<td>(V_{DM} = 400 , V); (T_j = 95 , ^{\circ}\text{C}); (I_{DRM} = 16 , A); (dl_{com}/dt = 7.2 , A/\text{ms}); gate open circuit</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>(t_{gt})</td>
<td>Gate controlled turn-on time</td>
<td>(I_{TM} = 20 , A); (V_{D} = V_{DRM(max)}); (I_{G} = 0.1 , A); (dl_{G}/dt = 5 , A/\mu \text{s})</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig. 1. Maximum on-state dissipation, P_{tot}, versus rms on-state current, $I_{T(\text{RMS})}$, where $\alpha = \text{conduction angle}$.

Fig. 2. Maximum permissible non-repetitive peak on-state current I_{TSM}, versus pulse width t_p, for sinusoidal currents, $t_p \leq 20\text{ms}$.

Fig. 3. Maximum permissible non-repetitive peak on-state current I_{TSM}, versus number of cycles, for sinusoidal currents, $f = 50\text{ Hz}$.

Fig. 4. Maximum permissible rms on-state current $I_{T(RMS)}$, versus heatsink temperature T_{hs}.

Fig. 5. Maximum permissible repetitive rms on-state current $I_{T(RMS)}$, versus surge duration, for sinusoidal currents, $f = 50\text{ Hz}$; $T_{\text{hs}} \leq 38^\circ\text{C}$.

Fig. 6. Normalised gate trigger voltage $V_{\text{GT}(T_j)}/V_{\text{GT}(25^\circ\text{C})}$, versus junction temperature T_j.
Fig. 7. Normalised gate trigger current $I_{GT}(T_J)/I_{GT}(25^\circ C)$, versus junction temperature T_J.

Fig. 8. Normalised latching current $I_L(T_J)/I_L(25^\circ C)$, versus junction temperature T_J.

Fig. 9. Normalised holding current $I_H(T_J)/I_H(25^\circ C)$, versus junction temperature T_J.

Fig. 10. Typical and maximum on-state characteristic.

Fig. 11. Transient thermal impedance $Z_{th,j-hs}$, versus pulse width t_p.

Fig. 12. Typical commutation dV/dt versus junction temperature, parameter commutation dI_T/dt. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dI_T/dt.
MECHANICAL DATA

Dimensions in mm

Net Mass: 2 g

Fig. 13. SOT186; The seating plane is electrically isolated from all terminals.

Notes
1. Accessories supplied on request: refer to mounting instructions for F-pack envelopes.
2. Epoxy meets UL94 V0 at 1/8".
DEFINITIONS

Data sheet status

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>This data sheet contains target or goal specifications for product development.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>This data sheet contains preliminary data; supplementary data may be published later.</td>
</tr>
<tr>
<td>Product specification</td>
<td>This data sheet contains final product specifications.</td>
</tr>
</tbody>
</table>

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1996

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.