BYD47 series
Fast soft-recovery rectifiers

Product specification
Supersedes data of November 1994
File under Discrete Semiconductors, SC01
Fast soft-recovery rectifiers

BYD47 series

FEATURES
- Glass passivated
- High maximum operating temperature
- Low leakage current
- Excellent stability
- Shipped in 8 mm embossed tape
- Smallest surface mount rectifier outline.

DESCRIPTION
Cavity free cylindrical glass SOD87 package through Implotec™ technology. This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched.

(1) Implotec is a trademark of Philips.

LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{RSM}</td>
<td>non-repetitive peak reverse voltage</td>
<td>BYD47-16, BYD47-18, BYD47-20</td>
<td>–</td>
<td>1700</td>
<td>V</td>
</tr>
<tr>
<td>V_{RRM}</td>
<td>repetitive peak reverse voltage</td>
<td>BYD47-16, BYD47-18, BYD47-20</td>
<td>–</td>
<td>1600</td>
<td>V</td>
</tr>
<tr>
<td>$I_{F(AV)}$</td>
<td>average forward current</td>
<td>$T_{tp} = 105 , ^\circ C$; see Fig. 2; averaged over any 20 ms period; see also Fig. 6</td>
<td>–</td>
<td>0.80</td>
<td>A</td>
</tr>
<tr>
<td>$I_{F(AV)}$</td>
<td>average forward current</td>
<td>$T_{amb} = 25 , ^\circ C$; PCB mounting (see Fig. 11); see Fig. 3; averaged over any 20 ms period; see also Fig. 6</td>
<td>–</td>
<td>0.34</td>
<td>A</td>
</tr>
<tr>
<td>I_{FRM}</td>
<td>repetitive peak forward current</td>
<td>$T_{tp} = 85 , ^\circ C$; see Fig. 4</td>
<td>–</td>
<td>8.0</td>
<td>A</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>storage temperature</td>
<td></td>
<td>–65</td>
<td>+175</td>
<td>°C</td>
</tr>
<tr>
<td>T_{j}</td>
<td>junction temperature</td>
<td></td>
<td>–65</td>
<td>+175</td>
<td>°C</td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS

$T_j = 25 \, ^\circ C$ unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_F</td>
<td>forward voltage</td>
<td>$I_F = 1 , A; , T_j = T_{j\max}; , \text{see Fig. 8}$</td>
<td>–</td>
<td>2.05</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_F = 1 , A; , \text{see Fig. 8}$</td>
<td>–</td>
<td>2.40</td>
<td>V</td>
</tr>
<tr>
<td>I_R</td>
<td>reverse current</td>
<td>$V_R = V_{RRM\max}; , \text{see Fig. 9}$</td>
<td>–</td>
<td>5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_R = V_{RRM\max}; , T_j = 125 , ^\circ C; , \text{see Fig. 9}$</td>
<td>–</td>
<td>50</td>
<td>μA</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>reverse recovery time</td>
<td>when switched from $I_F = 0.5 , A$ to $I_R = 1 , A$; measured at $I_R = 0.25 , A$; , see Fig. 12</td>
<td>–</td>
<td>300</td>
<td>ns</td>
</tr>
<tr>
<td>C_d</td>
<td>diode capacitance</td>
<td>$f = 1 , \text{MHz}; , V_R = 0 , V; , \text{see Fig. 10}$</td>
<td>15</td>
<td>–</td>
<td>pF</td>
</tr>
<tr>
<td>$\left</td>
<td>\frac{dI_R}{dt} \right</td>
<td>$</td>
<td>maximum slope of reverse recovery current</td>
<td>when switched from $I_F = 1 , A$ to $V_R \geq 30 , V$ and $dI_F/dt = -1 , A/\mu s$; , see Fig. 13</td>
<td>–</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>VALUE</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{th, j-tp}$</td>
<td>thermal resistance from junction to tie-point</td>
<td></td>
<td>30</td>
<td>K/W</td>
</tr>
<tr>
<td>$R_{th, j-a}$</td>
<td>thermal resistance from junction to ambient</td>
<td>note 1</td>
<td>150</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Note

1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer $\geq 40 \, \mu m$, see Fig.11. For more information please refer to the ‘General Part of Handbook SC01.’
GRAPHICAL DATA

Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

Fig.3 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage).

Fig.4 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

\[a = 1.42; V_R = V_{RRM\max}; \delta = 0.5. \]

Switched mode application.

\[T_{tp} = 85 {}^\circ C; R_{thj\uparrow tp} = 30 \text{ K/W.} \]

\[V_{RRM\max} \text{ during } 1 - \delta; \text{curves include derating for } T_{j\max} \text{ at } V_{REM} = 2000 \text{ V.} \]
Philips Semiconductors

Fast soft-recovery rectifiers

BYD47 series

\[T_{\text{amb}} = 65 \, ^{\circ}\text{C}; R_{\text{th j-a}} = 150 \, \text{K/W}. \]

\[V_{\text{RRMmax}} \text{ during } 1 - \delta \text{; curves include derating for } T_{\text{j max}} \text{ at } V_{\text{RRM}} = 2000 \, \text{V}. \]

Fig. 5 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor.

\[a = \frac{I_{\text{F(RMS)}}}{I_{\text{F(AV)}}}; V_R = V_{\text{RRMmax}}; \delta = 0.5. \]

Fig. 6 Maximum steady state power dissipation (forward plus leakage current losses, excluding switching losses) as a function of average forward current.

Fig. 7 Maximum permissible junction temperature as a function of reverse voltage.
Fast soft-recovery rectifiers

BYD47 series

Fig. 8 Forward current as a function of forward voltage; maximum values.

Dotted line: $T_j = 175 \degree C$.
Solid line: $T_j = 25 \degree C$.

Fig. 9 Reverse current as a function of junction temperature; maximum values.

$v_r = v_{RRM\max}$.

Fig. 10 Diode capacitance as a function of reverse voltage; typical values.

$t = 1 \text{ MHz}; T_j = 25 \degree C$.

Fig. 11 Printed-circuit board for surface mounting.

Dimensions in mm.
Input impedance oscilloscope: 1 MΩ, 22 pF; \(t_r \leq 7 \) ns.
Source impedance: 50 Ω; \(t_r \leq 15 \) ns.

Fig. 12 Test circuit and reverse recovery time waveform and definition.

Fig. 13 Reverse recovery definitions.
DEFINITIONS

Data Sheet Status

<table>
<thead>
<tr>
<th>Status Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>This data sheet contains target or goal specifications for product development.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>This data sheet contains preliminary data; supplementary data may be published later.</td>
</tr>
<tr>
<td>Product specification</td>
<td>This data sheet contains final product specifications.</td>
</tr>
</tbody>
</table>

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.